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Abstract

The difference-of-convex algorithm (DCA) is a conceptually simple method for the minimiza-
tion of (possibly) nonconvex functions that are expressed as the difference of two convex func-
tions. At each iteration, DCA constructs a global overestimator of the objective and solves the
resulting convex subproblem. Despite its conceptual simplicity, the theoretical understanding
and algorithmic framework of DCA needs further investigation. In this paper, global conver-
gence of DCA at a linear rate is established under an extended Polyak– Lojasiewicz condition.
The proposed condition holds for a class of DC programs with a bounded, closed, and convex
constraint set, for which global convergence of DCA cannot be covered by existing analyses.
Moreover, the DCProx computational framework is proposed, in which the DCA subproblems
are solved by a primal–dual proximal algorithm with Bregman distances. With a suitable choice
of Bregman distances, DCProx has simple update rules with cheap per-iteration complexity. As
an application, DCA is applied to several fundamental problems in network information the-
ory, for which no existing numerical methods are able to compute the global optimum. For
these problems, our analysis proves the global convergence of DCA, and more importantly,
DCProx solves the DCA subproblems efficiently. Numerical experiments are conducted to verify
the efficiency of DCProx.

1 Introduction

In this paper, we consider the difference-of-convex (DC) programming problems of the form

minimize f(x) = g(x)− h(x)
subject to x ∈ C, (1)

where the functions g, h are convex and differentiable, and C is a bounded, convex set. This general
problem covers a wide variety of applications in machine learning, information theory, statistics,
and other fields [1–4]. A conceptually simple method for solving (1) takes the iterations

x(k+1) ∈ argmin
x∈C

(
g(x)− (h(x(k)) + ⟨∇h(x(k)), x− x(k)⟩)

)
; (2)

i.e., one replaces h with its first-order Taylor expansion at x(k) and then solves the resulting
convex subproblem. Due to the DC structure of (1), the iteration (2) will be referred to as the
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difference-of-convex algorithm (DCA). This paper studies the convergence theory of DCA and
numerical methods for the subproblem in (2), and discusses applications of DCA in a class of
matrix optimization problems involving log-determinant functions.

DC programming and DCA have been extensively studied since the late 1990s [1,2,5,6]. Classical
convergence analyses for DCA establish asymptotic convergence to a first-order stationary point
[2, 5], and convergence to a global optimum has not been investigated until very recently [7–9].
However, existing analyses for global convergence only consider the case where C is the entire
space, and cannot handle closed and bounded constraint sets. Problems with such more complicated
constraint sets arise from network information theory, functional analysis, statistics, etc.; see [4, 7,
10]. For these problems, only the global minimizer is useful for practical reasons, but unfortunately
global convergence of DCA has not been established for them.

Despite the limited global convergence guarantees, numerical methods for the subproblem in (2)
are also lacking for the aforementioned applications. For these problems (and many others), the
constraint set C is often expensive to project on, which prevents the direct use of first-order meth-
ods based on projections and gradient evaluations. Therefore, the structure of C (as well as the
objective) should be further exploited, and customized subproblem solvers should be developed for
the class of DC programs in the form (1).

In view of the above difficulties, this paper studies the conceptual DC algorithm from both
theoretical and algorithmic aspects. From the theoretical angle, linear global convergence of DCA is
established under a new set of conditions. The proposed assumption extends the recently proposed
DC PL condition [9] to account for a bounded, closed, convex constraint set, and is shown to be
satisfied in several classes of matrix optimization problems involving log-determinant functions.

In the computational phase, the DCProx algorithmic framework is developed to extend the scope
of nonconvex problems numerically solvable by DCA. In DCProx, primal–dual proximal algorithms
with Bregman distances are applied to exploit the subproblem structure at each DCA iteration,
and solve those subproblems that are not suitable for projected gradient methods. With a suitable
choice of Bregman distances, the inner iterations in DCProx are simple (Bregman) projections and
have cheap per-iteration complexity. As an application, DCProx is applied to several fundamental
problems in information theory. For these problems, DCProx is shown to converge to the global
optimum, and has promising numerical performance.

The rest of the paper is organized as follows. Section 2 reviews the technical background and
related work. The DCProx framework is developed in Section 3.1, and in Section 3.2, global conver-
gence of DCA is established under a new set of conditions. Section 4 presents several applications,
for which DCA converges to the global optimum and customized DCProx has simple update rules
with cheap per-iteration complexity. Section 5 includes numerical results and Section 6 concludes
the paper.

2 Background and related work

In this section, we discuss some background knowledge on the difference-of-convex algorithm (DCA)
and primal–dual first-order proximal algorithms, along with the review on related work. These two
methods are the basic ingredients of the presented algorithmic framework.

We define [n] = {1, 2, . . . , n} for n ∈ N. We denote by Sn the set of symmetric n× n matrices,
and by Sn+ the set of symmetric, positive semidefinite (PSD) n×n matrices. The inequality X ⪰ 0
means that X is PSD. The notation ⟨x, y⟩ = xT y is used to denote the inner product of vectors x
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and y, and ∥x∥2 = ⟨x, x⟩1/2 is the Euclidean norm. Other norms will be distinguished by subscripts.
The convex conjugate of f is defined as f∗(y) = supx (⟨x, y⟩ − f(x)).

2.1 The difference-of-convex algorithm (DCA)

DCA (2) can be viewed as a variant of the majorization–minimization (MM) algorithm [11] because
at each iteration, it builds a global overestimator of the original problem and solves the resulting
simpler subproblem. The constructed overestimator (known as surrogate in MM methods) is able
to retain all the information from the convex component and only linearizes the concave portion.
Extensions and variants of (2) exist for various kinds of problems. The current name DCA follows its
original paper [12], and the same iteration (2) is also called the concave–convex procedure (CCCP)
by different researchers; see, e.g., [13–15]. The relation and difference between DCA and CCCP have
been discussed in, e.g., [1, 2], and in this paper, we use the term DCA to refer to the iteration (2)
applied to the problem (1).

Asymptotic convergence of DCA to a first-order stationary point follows naturally from the
analysis of MM methods [11]. Direct analyses of DCA also exist, with different assumptions on
the problem; see, e.g., [5, 16]. However, global convergence of DCA has not been studied until
very recently [7–9], and is of particular interest here due to the nature of the applications studied
in this paper. Global convergence of DCA can be established when the DC program (1) exhibits
additional properties. For example, if the objective in (1) is geodesically convex on a manifold M
and C ⊆ M, DCA (2) converges to a global optimum at a linear rate [7]. In addition, the classical
Polyak– Lojasiewicz (PL) condition is also studied and extended for DC programming [8, 9]. A
locally Lipschitz, continuously differentiable function f is said to satisfy the PL condition if there
exists µ > 0 such that

µ(f(x)− f(x⋆)) ≤ 1
2∥∇f(x)∥22, for all x ∈ dom f, (3)

where x⋆ is a global minimizer of f . If C = Rd, g, h are locally Lipschitz continuous, and f satisfies
the PL condition, then DCA (2) converges linearly to a global optimum [8]. The squared Euclidean
distance in the classical PL condition can also be replaced with a Bregman distance (generated
by g∗ or h∗), yielding the so-called DC PL condition in [9]. Then linear global convergence is
established for DCA if C = Rd, g, h are continuously differentiable, and f satisfies the DC PL
condition [9].

2.2 Primal–dual proximal algorithms with Bregman distances

The design of proximal splitting algorithms has recently become an active research area, and prox-
imal methods have been widely applied throughout science and engineering; see [17, 18] for recent
surveys. In general, proximal methods iteratively decompose a large-scale optimization problem
into smaller, simpler problems and then solve them separately. Thus, proximal methods are suit-
able for large-scale (or even huge-scale) convex optimization problems that cannot be handled by
general-purpose solvers.

An important pillar for proximal algorithms is the (Euclidean) proximal operator (or proximal
mapping) of a closed convex function f : Rd → R, which is defined as

proxf (u) = argmin
x

(
f(x) + 1

2∥x− u∥
2
2

)
. (4)
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The minimizer in the definition always exists and is unique for all u, as long as f is closed and
convex [19]. The squared Euclidean distance used in (4) can also be replaced with a generalized
distance d, of which an important example is the Bregman distance. Let ϕ be a convex function
with a domain that has a nonempty interior, and assume ϕ is continuous on domϕ and continuously
differentiable on int(domϕ). The Bregman distance [20] generated by the kernel function ϕ is

d(x, y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x− y⟩,

with dom d = domϕ× int(domϕ). The corresponding Bregman proximal operator is defined as:

proxϕ
f (u, a) = argmin

x

(
f(x) + ⟨a, x⟩+ d(x, u)

)
.

It is assumed that the minimizer in the definition is unique and lies in int(domϕ) for all a and all
u ∈ int(domϕ). In all the applications studied in this paper, the Bregman proximal operator is
used with specific combinations of f and ϕ, and its existence and uniqueness follow directly from a
closed-form solution. The use of Bregman distances can make the corresponding proximal operator
easier to compute, and/or help build a more accurate local optimization model around the current
iterate of a proximal algorithm [21]. We refer interested readers to [22–25] for more applications of
Bregman proximal methods.

In this paper, proximal algorithms are applied to convex problems of the form

minimize F (u) +G(Au), (5)

with optimization variable u, where F , G are closed convex functions and A is a linear mapping. A
well-known proximal method for solving this type of problem is the Bregman primal–dual hybrid-
gradient (PDHG) algorithm [26,27]:

u(t+1) = prox
ϕp

τF (u(t), τA∗v(t)) (6a)

v(t+1) = proxϕd
σG∗(v(t),−σA(2u(t+1) − u(t))), (6b)

where A∗ is the adjoint operator of A, and ϕp and ϕd are two kernel functions in the primal and
dual spaces, respectively. It is assumed (without loss of generality) that ϕp and ϕd are 1-strongly
convex with respect to norms ∥ · ∥p and ∥ · ∥d:

dp(u, u′) ≥ 1
2∥u− u

′∥2p, dd(v, v′) ≥ 1
2∥v − v

′∥2d

for all (u, u′) ∈ dom dp and (v, v′) ∈ dom dd. The stepsizes σ, τ must satisfy στ∥A∥2 ≤ 1. Here
the operator norm ∥A∥ is defined as

∥A∥ = sup
u̸=0,v ̸=0

⟨v,Au⟩
∥v∥d∥u∥p

= sup
u̸=0

∥Au∥d,∗
∥u∥p

= sup
v ̸=0

∥A∗v∥p,∗
∥v∥d

,

where ∥ · ∥p,∗ and ∥ · ∥d,∗ are the dual norm of ∥ · ∥p and ∥ · ∥d, respectively. Line search techniques
also exist for choosing adaptive stepsizes [21,28,29]. With suitable stepsizes, the iterates (u(k), v(k))
converge to a primal and dual optimum of the problem (5), and the averaged iterates converge
at a rate of O(1/k) [21, 27, 30]. Successful applications of Bregman PDHG range from signal
processing [25], optimal transport [31] to sparse semidefinite programming [29].
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Algorithmic Framework 1 DCProx

1: for k = 1, 2, . . . , do
2: for t = 1, 2, . . . , do
3: Compute the Bregman PDHG updates:

u(t+1) ← argmin
u∈C1

g(u) + ⟨A∗v(t) −∇h(x(k)), u⟩+ 1
τ dp(u, u(t)) (7a)

v(t+1) ← argmin
v

δ∗C2(v)− ⟨A(2u(t+1) − u(t)), v⟩+ 1
σdd(v, v(t)). (7b)

4: end for
5: Update DCA iterate x(k+1) ← û, where (û, v̂) is the limit point of Bregman PDHG.
6: end for

3 DCProx algorithmic framework and global convergence of DCA

We now present our theoretical and algorithmic contributions to DCA. When DCA is applied to
the problem (1) (with a nontrivial constraint set C), global convergence cannot be obtained directly
from existing results, and the subproblem (2) cannot be solved efficiently by first-order methods
based on projections and gradient evaluations. However, when C exhibits special structure (e.g.,
it is written as the intersection of simple convex sets), primal–dual proximal methods can be used
to split the nontrivial set constraints and each (primal/dual) update becomes a simple (Bregman)
projection. In addition, the recently proposed DC PL condition [9] is extended to account for a
closed and bounded set C, and global convergence is established for DCA when applied to (1).

3.1 The DCProx framework

Very often in applications, the constraint set C is nontrivial, and projection onto C is expensive.
Thus, most projection-and-gradient-based first-order methods are not efficient in solving the sub-
problem in (2), and special structure of C should be leveraged to design a customized subproblem
solver. In many applications, the set C can be naturally written as the intersection of two (or
several) simple convex sets, and projection onto each component set is much easier than projection
on C. (This is true for all the applications in Section 4, and in particular, Section 4.3 provides an
example in which C consists of an arbitrary number of component sets.) This motivates the use of
primal–dual proximal algorithms (e.g., PDHG [26, 27]) as the subproblem solver. For example, if
C = C1 ∩ C2, where C1 and C2 are convex sets, the subproblem (2) can be reformulated in the form
of (5) with

F (u) = g(u)− ⟨∇h(x(k)), u⟩+ δC1(u), G(v) = δC2(v), A = Id,

where δCi is the indicator function of Ci and Id is the identity operator. Therefore, with Bregman
PDHG (6) as the subproblem solver, the proposed DCProx algorithmic framework is summarized in
Framework 1. (The term Prox indicates that proximal methods exploit a splitting of C.) It is called
an algorithmic framework rather than an algorithm because in principle, ϕp and ϕd could be any
valid kernel functions. The choice of Bregman kernels largely depends on problem structure, and
a suitable choice of kernels can significantly improve the efficiency of DCProx. The distance dd in
the dual space is often chosen as the squared Euclidean distance (ϕd = 1

2∥ · ∥
2
2), and then the dual
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update (7b) simply involves the Euclidean projection on C2. Moreover, when we choose ϕp = g,
the primal update (7a) reduces to

u(t+1) = argmin
u∈C1

(1 + 1
τ )g(u) +

〈
τ

1+τ (A∗v(t) −∇h(x(k)))− 1
τ∇g(u(t)), u

〉
= argmin

u∈C1
dg(u, ũ), where ∇g(ũ) = τ

1+τ (A∗v(t) −∇h(x(k)))− 1
τ∇g(u(t)).

With this choice of the kernel, the primal update is simply a Bregman projection on C1. (Note
that x(k) is the kth DCA iterate while (u(t), v(t)) is the tth PDHG iterate. The vector ũ is used
only for demonstration purpose, and is not computed explicitly in practice.)

3.2 Global convergence for DCA

While the presented DCProx framework makes DCA tractable for a wider range of DC problems
(with a nontrivial convex constraint set), we show that for these problems, DCA converges to a
global optimum at a linear rate. (Note that the presented analysis focuses on the DCA iterations (2),
and is independent of the subproblem solver.) All the assumptions for (1) are listed below, and
global convergence of DCA for this kind of problems are not addressed by existing analyses [7–9].

Assumption 1. The following assumptions are made for the problem (1).

1. The functions g, h are closed, convex, and continuously differentiable on their respective domains.

2. The constraint set C is bounded, closed, and convex, with C ⊆ dom g ∩ domh.

3. The problem (1) has a global minimizer x⋆ with a finite optimal value f⋆ = f(x⋆).

4. The DCA iteration (2) is solvable for any point x(k) ∈ C.

5. There exists µ > 0 such that for some r > 0,

µ(f(x)− f⋆) ≤ dh∗(∇g(x) + y,∇h(x)), for all x ∈ C, y ∈ NC(x) and ∥y∥2 ≤ r (8)

where NC(x) is the normal cone of C at x.

The differentiability of g and h implies that dom f is an open set, and existing analyses [8,9] that
(implicitly) assume C = Rd cannot handle a closed and bounded constraint set. Assumption 1.4
is an extension of the recently proposed DC PL condition [9, Definition 1] and the classical PL
condition. (A similar condition is proposed in [32] for the mirror descent method.) In particular,
(8) replaces the squared Euclidean distance in the PL condition (3) with a Bregman distance, and
carefully handles the closedness and boundedness of C that is often ignored in the DCA literature.
The constant r > 0 is needed to bound ∥y∥2 when y is on the boundary of C, and is used only for
theoretical analysis. Assumption 1.4 might (implicitly) impose some requirements on the constant r,
but its actual value does not need to be known in practice. With Assumption 1, we can prove a
linear convergence rate on the function value.

Theorem 1. With Assumption 1, the DCA iteration (2) satisfies

f(x(k+1))− f⋆ ≤ 1

1 + µ
(f(x(k))− f⋆).
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Proof. From Assumption 1, ∥∇g(x)∥2 and ∥∇h(x)∥2 are bounded for all x ∈ C, and then it is
assumed that the constant r satisfies r > ∥∇g(x)∥2 + ∥∇h(x)∥2 for all x ∈ C. The optimality
condition of DCA implies that there exists ŷ ∈ NC(x(k+1)) and ∥ŷ∥2 ≤ r such that ∇h(x(k)) =
∇g(x(k+1)) + ŷ. Then it follows from (8) that

µ(f(x(k+1))− f⋆)
≤ dh∗(∇g(x(k+1)) + ŷ,∇h(x(k+1)))

= dh∗(∇h(x(k)),∇h(x(k+1)))

= h∗(∇h(x(k)))− h∗(∇h(x(k+1)))− ⟨x(k+1),∇h(x(k))−∇h(x(k+1))⟩
= ⟨∇h(x(k)), x(k)⟩ − h(x(k))− ⟨∇h(x(k+1)), x(k+1)⟩+ h(x(k+1))

− ⟨x(k+1),∇h(x(k))−∇h(x(k))⟩
= dh(x(k+1), x(k))

= f(x(k))− f(x(k+1))− dg(x(k), x(k+1))

≤ (f(x(k))− f⋆)− (f(x(k+1))− f⋆).

Thus, the desired inequality follows.

4 Application to log-determinant optimization problems

In this section, we apply DCProx to several classes of problems arising from network information
theory [4, 10, 33, 34]. Each of these problems is shown to have a unique global solution [4], but so
far we are not aware of any optimization algorithm that is guaranteed to find the optimum. In
comparison, with Theorem 1 we show that DCA converges to the unique global optimum for all
the problems of interest. Moreover, for all the studied applications, projected gradient methods
might not be applicable to the subproblems in (2) due to a nontrivial C. In comparison, DCProx is
able to solve these subproblems by splitting the nontrivial constraint set C, and in particular, the
use of a suitable Bregman distance further improves the efficiency of DCProx.

4.1 Two receiver vector Gaussian broadcast channel with private messages

Consider the optimization problem

minimize − log det(X + Σ1) + λ log det(X + Σ2)
subject to 0 ⪯ X ⪯ C, (9)

where the variable is X ∈ Sn, and the coefficients are Σ1,Σ2 ∈ Sn++, C ∈ Sn+, and λ > 1. This
problem arises from various applications in network information theory, wireless communication,
etc.; see, e.g., [33,35]. In certain applications, the unique global optimum of the problem evaluates
the capacity region of two receiver vector Gaussian broadcast channels with private messages [4].
Due to the nature of its origin, only the global solution of (9) is useful for the underlying application,
and other first-order stationary points are of limited interest.
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4.1.1 DCA and its global convergence

The problem (9) is a DC program in the form of (1) with

g(X) = − log det(X + Σ1), h(X) = −λ log det(X + Σ2), C = {X ∈ Sn | 0 ⪯ X ⪯ C}.

In this problem, the functions g, h are strongly convex on the bounded set C, and have an Lipschitz
continuous gradient on int C. (But they are not strongly convex nor L-smooth on their natural
domains.) This fact helps to establish the inequality (8) for (9), and then global convergence of
DCA is provided in Proposition 1.

Proposition 1. Problem (9) satisfies Assumption 1. DCA for (9) converges to its minimizer at a
linear rate.

Proof. It suffices to show that the problem (9) satisfies the inequality (8). Within the bounded,
convex set C = {X ∈ Sn | 0 ⪯ X ⪯ C}, the function g(X) = − log det(X + Σ1) has a Lipschitz
continuous gradient and h(X) = −λ log det(X + Σ2) is strongly convex. Thus, there exists two
positive constants α, β > 0 such that for all X ∈ C,

g(X)− g(X⋆) ≤ α
2 ∥X −X

⋆∥2F
h(X)− h(X⋆) ≥ β

2 ∥X −X
⋆∥2F ,

where X⋆ is the global optimum for (9). Thus it follows that

f(X)− f(X⋆) ≤ α−β
2 ∥X −X

⋆∥2F (10)

for all X ∈ C. (It implies from the optimality of X⋆ that α > β.)
On the other hand, the convex conjugate h∗ is also strongly convex on the bounded, convex

set C. Thus, there exists some γ > 0 such that dh∗(U, V ) ≥ γ
2∥U − V ∥

2
F ; see, e.g., [21]. Hence, the

right-hand side of (8) is bounded below by

dh∗(∇g(X) + Y,∇h(X)) ≥ γ
2∥∇g(X) + Y −∇h(X)∥2F

= γ
2∥∇g(X) + Y −∇h(X)− (∇g(X⋆) + Y ⋆ −∇h(X⋆))∥2F

≥ γ
2

∣∣∥∇f(X)−∇f(X⋆) + (Y − Y ⋆)∥2F , (11)

where Y ⋆ ∈ NC(X⋆) satisfies ∇g(X⋆) + Y ⋆ = ∇h(X⋆). Following the same argument in the first
part, we can see that there exists κmax > κmin > 0 such that κmin∥X − X⋆∥F ≤ ∥∇f(X) −
∇f(X⋆)∥F ≤ κmax∥X −X⋆∥F for all X ∈ C. In addition, for all Y ∈ NC(X) and ∥Y ∥F ≤ r, there
exists ξmax > ξmin > 0 such that ξmin ≤ ∥Y − Y ⋆∥F ≤ ξmax. Thus, it follows that

∥∇f(X)−∇f(X⋆) + (Y − Y ⋆)∥F
≥

∣∣∥∇f(X)−∇f(X⋆)∥F − ∥Y − Y ⋆∥F
∣∣

≥ max{κmin∥X −X⋆∥F − ξmax, ξmin − κmax∥X −X⋆∥F }. (12)

Clearly, there exists η > 0 such that

η∥X −X⋆∥F ≤ ξmin − κmax∥X −X⋆∥F . (13)

Combining (10)–(13), we conclude that there exists µ = (α− β)/(η2γ) > 0 such that

µ(f(X)− f(X⋆)) ≤ dh∗(∇g(X) + Y,∇h(X)).
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4.1.2 DCProx: Bregman PDHG as the subproblem solver

The kth DCA iteration (2) for problem (9) involves the convex subproblem

minimize − log det(U + Σ1) + λ⟨(X(k) + Σ2)
−1, U⟩

subject to 0 ⪯ U ⪯ C (14)

with optimization variable U ∈ Sn. Projection onto the constraint set C is much more expensive
than a PSD projection, which prevents the direct use of first-order methods based on projections
and gradient evaluations. Nevertheless, the constraint set can be written as C = Sn+ ∩ C0 with
C0 = {U ∈ Sn | U ⪯ C}, and projection on each component set (Sn+ and C0) is much easier.
This observation motivates the use of primal–dual proximal algorithms, and when Framework 1 is
applied, the inner iterations (7) (with ϕp = g and ϕd = 1

2∥ · ∥
2
2) reduce to

U (t+1) = argmin
U∈Sn+

−(1 + 1
τ ) log det(U + Σ1) + ⟨V (t) + λ(X(k) + Σ2)

−1 +
1

τ
(U (t) + Σ1)

−1, U⟩

V (t+1) = proxσδ∗C0
(V (t) + σ(2U (t+1) − U (t))),

Dual update Recall proxδC0
= ΠC0 is the projection operator, and the V -update reduces to

V (t+1) = ΠSn+
(
σC − V (t) − σ(2U (t+1) − U (t))

)
−
(
σC − V (t) − σ(2U (t+1) − U (t))

)
;

i.e., given the eigen-decomposition of V̂ = σC − V (t) − σ(2U (t+1) − U (t)), the next iterate V (t+1)

simply sets the positive eigenvalues of V̂ to zero and takes the absolute values of the negative ones.

Primal update If the squared Euclidean distance is used in the U -update, the computation of
the proximal mapping needs an eigen-decomposition and solving a number of n quadratic equations
(see, e.g., [36, §6.5]). In comparison, with ϕp(X) = g(X), we can avoid solving a large number of
quadratic equations, and the U -update has a closed-form expression given by Proposition 2.

Proposition 2. Consider the optimization problem

minimize − log det(X + Σ) + ⟨A,X⟩
subject to X ⪰ 0

with variable X ∈ Sn and data matrices A,Σ ∈ Sn++. Suppose Σ1/2AΣ1/2 = QΛQT is the eigen-
decomposition, with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn > 0. Then the optimal solution is

X⋆ = Σ1/2Qψ(Λ)QTΣ1/2.

Here the scalar function ψ is defined as ψ(γ) = max{(1− γ)/γ, 0}, and ψ(Λ) is a diagonal matrix
with diagonal elements ψ(Λ)ii = ψ(λi).

Proof. With a change of variables Y = QTΣ−1/2XΣ−1/2Q, the objective function can be equiva-
lently written as

f(X) = − log det
(
Σ1/2(I + Σ−1/2XΣ−1/2)Σ1/2

)
+ ⟨Σ1/2AΣ1/2,Σ−1/2XΣ−1/2⟩

= − log det Σ− log det(I + Σ−1/2XΣ−1/2) + ⟨Σ1/2AΣ1/2,Σ−1/2XΣ−1/2⟩
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= − log det Σ− log det(I + Y ) + ⟨Λ, Y ⟩.

We argue that the optimal Y is a diagonal matrix. To see this, suppose Y is diagonal. Then it
follows that ⟨Λ, Y ⟩ ≤ ⟨Λ, V Y V T ⟩, for any diagonal matrix Λ with nonnegative diagonal elements
and any orthogonal matrix V . Hence the optimal Y has to diagonal, and f further reduces to

f(X) = − log det Σ +

n∑
i=1

(λiYii − log(1 + Yii)).

Recall that A,Σ ∈ Sn++, and it follows that γi > 0 for all i = 1, . . . , n. Define the scalar function
h(γ) = λγ − log(1 + γ) with domain R+. If λ > 1, the function h is monotone increasing on its
domain, and the minimizer of h is taken at 0. If 0 < λ ≤ 1, the function h takes its minimum at
γ = (1− λ)/λ. Hence, the optimal Y ⋆ is a diagonal matrix with diagonal entries

Y ⋆
ii = ψ(λi) = max

{1− λi
λi

, 0
}
,

and then the optimal solution X⋆ is given by

X⋆ = Σ1/2Q


ψ(λ1)

ψ(λ2)
. . .

ψ(λn)

QTΣ1/2.

4.2 Gaussian broadcast channel with common messages

The second nonconvex DC program of interest is a generalization of (9), and reads as

minimize −β log det(X + Y + Σ2) + α log det(X + Y + Σ1)
− log det(X + Σ1) + λ log det(X + Σ2)

subject to X + Y ⪯ C, X ⪰ 0, Y ⪰ 0,
(15)

where the optimization variables are X,Y ∈ Sn, and the coefficients are Σ1,Σ2 ∈ Sn++, C ∈ Sn+,
α ∈ [0, 1], β > 0, and λ > 1. (This choice of parameters is included in [34], and other choices
in [34] give an optimization problem that is easier to solve than the presented one.) The unique
solution of (15) evaluates the capacity region of two receiver vector Gaussian broadcast channels
with common messages and private messages; see [34] and references therein.

The problem (15) can also be written in the form of (1), with convex functions g, h : Sn×Sn → R

g(X,Y ) = −β log det(X + Y + Σ2)− log det(X + Σ1),

h(X,Y ) = −α log det(X + Y + Σ1)− λ log det(X + Σ2),

and the constraint set C = {(X,Y ) | X ⪰ 0, Y ⪰ 0, X + Y ⪯ C}. Following the same ideas as in
Proposition 1, we show that DCA applied to (15) converges to its unique global optimum.

Proposition 3. Problem (15) satisfies Assumption 1. DCA for (15) converges to its minimizer at
a linear rate.
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In the remainder of this subsection, we focus on the convex subproblem at kth DCA iteration:

minimize −β log det(U + Ũ + Σ2) + α⟨(X(k) + Y (k) + Σ1)
−1, U + Ũ⟩

− log det(U + Σ1) + λ⟨(X(k) + Σ2)
−1, U⟩

subject to U + Ũ ⪯ C, U ⪰ 0, Ũ ⪰ 0

(16)

with variables U, Ũ ∈ Sn. We first make a change of variables W := U + Ũ , and then reformulate
the problem (16) in the form of (5) with

F (U,W ) = −β log det(W + Σ2) + α⟨(X(k) + Y (k) + Σ1)
−1,W ⟩

− log det(U + Σ1) + λ⟨(X(k) + Σ2)
−1, U⟩+ δSn+(U) + δC0(W )

G = δSn+ , C0 = {W ∈ Sn |W ⪯ C},

and the linear mapping A : Sn × Sn → Sn is defined as A(U,W ) = W − U . When Framework 1 is
applied to this splitting strategy, the inner iterations (7) reduce to

U (t+1) = argmin
U∈Sn+

(
− log det(U + Σ1) + ⟨−V (t) + λ(X(k) + Σ2)

−1, U⟩+ 1
τ d1(U,U

(t))
)

W (t+1) = argmin
W∈C

(
− β log det(W + Σ2) + ⟨V (t) + α(X(k) + Y (k) + Σ1)

−1,W ⟩+ 1
τ d2(W,W

(t))
)

V (t+1) = proxσδ∗Sn+

(
V (t) + σ(2(W (t+1) − U (t+1))− (W (t) − U (t)))

)
.

The V -update is simple and involves an eigen-decomposition. In the U -update, we use the Bregman
distance generated by ϕ1(V ) = − log det(V + Σ1), and the closed-form update rule is given by
Proposition 2. A similar result exists for the W -update if we choose the kernel function ϕ2(W ) =
− log det(W + Σ2) with domϕ2 = {W ∈ Sn |W + Σ2 ≻ 0}. Then W -update minimizes

f̃(W ) = −(β + 1
τ ) log det(W + Σ2) + ⟨V (t) + α(X(k) + Y (k) + Σ1)

−1 + 1
τ (W (t) + Σ2)

−1,W ⟩

subject to W ⪯ C, and has a closed-form expression given in Proposition 4.

Proposition 4. Consider the optimization problem

minimize − log det(X + Σ) + ⟨A,X⟩
subject to X ⪯ C

with variable X ∈ Sn and data A,Σ ∈ Sn++, C ∈ Sn+. Suppose (C + Σ)1/2A(C + Σ)1/2 = QΛQT is
the eigen-decomposition, with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn > 0. Then the optimal solution is

X⋆ = (C + Σ)1/2Qψ(Λ)QT (C + Σ)1/2 − Σ.

Here the scalar function ψ is defined as ψ(γ) = min{1/γ, 1}, and ψ(Λ) is a diagonal matrix with
diagonal elements ψ(Λ)ii = ψ(λi).

Proof. With a change of variables Z = X + Σ, Y = QT (C + Σ)−1/2Z(K + Σ)−1/2Q, the objective
function can be equivalently written as

f(X) = − log det(C + Σ)− ⟨A,Σ⟩ − log detY + ⟨Λ, Y ⟩,

11



and the constraint is equivalent to Y ⪯ I. Following the argument in the proof of Proposition 2,
we can show that the optimal Y is a diagonal matrix. Then f further reduces to

f(X) = − log det(C + Σ)− ⟨A,Σ⟩+
n∑

i=1

λiYii − Yii.

Define the scalar function h(γ) = λγ − log γ and parameter λ ∈ R++. The function h is
decreasing on (0, 1/λ) and increasing on (1/λ,+∞). Hence, the optimal Y ⋆ is a diagonal matrix
with diagonal entries

Y ⋆
ii = ψ(λi) = max

{1− λi
λi

, 0
}
,

and the optimal solution X⋆ is given by

X⋆ = (C + Σ)1/2Q


ψ(λ1)

ψ(λ2)
. . .

ψ(λn)

QT (C + Σ)1/2 − Σ.

4.3 Generalized Brascamp–Lieb inequality

The third problem arises from theoretical computer science and functional analysis [10,37,38]

minimize −
p∑

i=1
βi log detXi +

q∑
j=1

αj log det
( p∑
i=1

AijXiA
T
ij + ρImj

)
subject to 0 ⪯ Xi ⪯ Ci, i ∈ [p],

(17)

where the optimization variables are Xi ∈ Sni , i ∈ [p], and the coefficients are Ci ∈ Sni
+ for i ∈ [p],

Aij ∈ Rmj×ni for (i, j) ∈ [p]× [q] with full row rank, α ∈ Rq
+, β ∈ Rp

+, and ρ > 0. Its unique global
optimum [4] computes the optimal constant for a family of inequalities in functional analysis and
probability theory, including the Brascamp–Lieb inequality and the entropy power inequality [10].
In particular, when the objective in (17) reduces to

fBL(X) = − log detX +

q∑
j=1

αj log det(AjXA
T
j )

(with 1Tα = 1) and the constraints disappear, the problem reduces to the computation of the
classical Brascamp–Lieb constant [3]. A recent paper [7] shows that the function fBL is geodesically
convex on Sn++ and DCA converges linearly to the global optimum when minimizing fBL. However,
in the general case, the objective in (17) may not be geodesically convex, and the analysis in [7]
is not directly applicable. But still, the general problem (17) is a DC program in the form of (1),
with

g(X) = −
p∑

i=1

βi log detXi, h(X) = −
q∑

j=1

αj log det
( p∑

i=1

AijXiA
T
ij + ρImj

)
,

and C = {(X1, . . . , Xp) | 0 ≤ Xi ≤ Ci, i ∈ [p]}, and we have the following result.

Proposition 5. Problem (17) satisfies Assumption 1. DCA for (17) converges linearly to its
minimizer.
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Apart from the convergence guarantee, the subproblem at kth DCA iteration is

minimize −
p∑

i=1
βi log detUi +

p∑
i=1

〈 q∑
j=1

αjA
T
ij(

p∑
i=1

AijX
(k)
i AT

ij + ρImj )
−1Aij , Ui

〉
,

subject to 0 ⪯ Ui ⪯ Ci, i ∈ [p]

(18)

with variables Ui ∈ Sni , i ∈ [p], and can be solved efficiently by Bregman PDHG. To see this, we first
rewrite the subproblem (18) in the form of (5): F ({Ui}) =

∑p
i=1 Fi(Ui), G({Vi}) =

∑p
i=1Gi(Vi),

Fi(Ui) = −βi log detUi +

q∑
j=1

αj

〈
AT

ij

( p∑
i=1

AijX
(k)
i AT

ij + ρImj

)−1
Aij , Ui

〉
+ δSni

+
(Ui),

Gi = δCi is the indicator function of Ci = {X ∈ Sni | X ⪯ Ci}, and the linear operator A = Id is the
identity mapping. Note that both functions F and G are separable in their respective arguments,
while the original function h is not separable in X1, . . . , Xp. The tth iteration of Bregman PDHG
takes the following updates for all i ∈ [p]

U
(t+1)
i = argmin

Ui∈S
ni
+

(
− βi log detUi +

q∑
j=1

αj

〈
AT

ij(AijX
(k)
i AT

ij + ρImj )
−1Aij , Ui

〉
+ ⟨V (t)

i , Ui⟩+ 1
τ d(Ui, U

(t)
i )

)
(19a)

V
(t+1)
i = proxσδ∗Ci

(V
(t)
i + σ(2U

(t+1)
i − U (t)

i )), (19b)

Again, each Vi-update is dominated by an eigen-decomposition. For each Ui-update, we choose the
kernel function ϕi(X) = − log detX with domain domϕi = Sni

++, and the resulting update (19a)

has a closed-form expression. Recall that the limit point {(Ûi, V̂i)} of Bregman PDHG (19) is the

solution of the subproblem (18), and is also the (k+ 1)st DCA iteration, i.e., X
(k+1)
i := Ûi, i ∈ [p].

The (Ui, Vi)-update in Bregman PDHG (19) can be performed in parallel while the DCA iterates

{X(k)
i } are coupled in the original function h as well as its linearization in (18).

5 Numerical experiments

In this section, we evaluate the performance of DCProx applied to the three DC programs in Sec-
tion 4. The numerical results verify that DCProx is able to solve the three classes of nonconvex
programs with only a few number of DCA iterations and an efficient subproblem solver.

The experiments are carried out in MATLAB 2021b on a server with AMD Opteron Processor
6128 CPU and 32GB memory. Since real data are not available for these problems, all the data
in our experiments are synthetic, following [7, 9]. Two classes of baselines are considered. The
nonlinear programming solver fmincon in Global Optimization Toolbox of Matlab is used to compare
the optimality of the computed solutions. For efficiency comparison, we also replace the subproblem
solver with Euclidean PDHG, and MOSEK [39]. Regarding implementation details, the line search
technique for Bregman PDHG [21,29,31] is adopted for an adaptive choice of the stepsizes τ , σ.

Table 1 presents the results of DCProx and fmincon. Small-size problems are sufficient for com-
parison with fmincon, and one typical result in the experiments is presented. For all three classes of
problems, fmincon might return a sub-optimal stationary point while DCProx is able to find a feasible
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n algo obj. value runtime

100
DCProx −4.2736 6.82
fmincon −3.3742 10.34

500
DCProx −3.5771 37.98
fmincon −1.2548 126.76

n algo obj. value runtime

100
DCProx −4.2674 8.63
fmincon −3.6485 22.17

500
DCProx −5.4356 54.89
fmincon −1.3288 262.13

n algo obj. value runtime

100
DCProx −4.4671 13.28
fmincon −3.9126 135.84

500
DCProx −3.9523 67.02
fmincon −2.5843 561.57

Table 1: Results of DCProx and fmincon for the problems (9) (left), (15) (middle), and (17) (right).
Objective function values and runtime (in sec.) are reported for a typical run of the algorithms.

n algo
avg. num. of

DCA iter.
avg. num. of

inner iter.
avg. runtime

(in sec.)
avg. runtime
per DCA iter.

500
DCProx 9.5 1735 3.63× 102 38.23
DCProx (Euc.) 9.5 2046 3.81× 102 40.09
DC-MOSEK 8.9 76 1.02× 103 108.1

1000
DCProx 13.6 1324 1.73× 103 127.2
DCProx (Euc.) 13.6 1684 2.20× 103 162.4
DC-MOSEK 13.2 96 9.87× 103 726.3

Table 2: Results for problem (9). Three algorithms are tested: DCProx, DCProx with Euclidean
PDHG, DCA with MOSEK as subproblem solver. The results are averaged over 10 synthetic
datasets.

point with a smaller objective value. This is consistent with our analysis that for these problems,
DCA converges to the unique global optimum (see Theorem 1).

Tables 2 to 4 present the numerical results for (9), (15), and (17), respectively. Three algorithms
are tested: DCProx, DCProx with Euclidean PDHG, and DCA with MOSEK as the subproblem solver.
The results are averaged over 10 experiments (with different synthetic data). In all the experiments,
DCA (the outer loop of DCProx) converges within around 10 iterations, which supports the linear
convergence result in Theorem 1. DC-MOSEK has a bit fewer DCA iterations because the interior-
point solver MOSEK often returns a more accurate subproblem solution than first-order PDHG.
It is also observed that the customized subproblem solver in DCProx (Bregman PDHG) performs
consistently better than the other two. The average number of iterations in both PDHG methods
is about one to two thousand, which is typical for these primal–dual first-order proximal methods.
(interior-point solver MOSEK takes much fewer iterations but has much more expensive per-iteration
complexity.) The per-iteration runtime of Bregman PDHG is smaller than that of its Euclidean
variant, because the former does not need to solve a number of n quadratic equations (as explained
in Section 4.1). Bregman PDHG takes fewer iterations (on average) than Euclidean PDHG, which
might be explained by the fact that the Bregman distance can help build a more accurate local
optimization model around the current iterate [21].

6 Conclusions

We present the DCProx framework for solving several classes of difference-of-convex (DC) program-
ming problems that have a bounded, closed, and convex constraint set. DCProx incorporates the
difference-of-convex algorithm (DCA) in the outer iteration and a Bregman primal–dual proximal
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n algo
avg. num. of

DCA iter.
avg. num. of

inner iter.
avg. runtime

(in sec.)
avg. runtime
per DCA iter.

500
DCProx 10.2 1273 5.71× 102 56.07
DCProx (Euc.) 10.2 1496 5.63× 102 75.83
DC-MOSEK 9.8 93 2.32× 103 225.1

1000
DCProx 12.4 1468 3.50× 103 281.9
DCProx (Euc.) 12.4 1632 4.08× 103 313.3
DC-MOSEK - - - -

Table 3: Results for problem (15). Three algorithms are tested: DCProx, DCProx with Euclidean
PDHG, DCA with MOSEK as the subproblem solver. The results are averaged over 10 synthetic
datasets. ‘-’ indicates the experiments do not finish in 6 hours.

n algo
avg. num. of

DCA iter.
avg. num. of

inner iter.
avg. runtime

(in sec.)
avg. runtime
per DCA iter.

500
DCProx 14.7 1157.9 9.98× 102 64.21
DCProx (Euc.) 14.7 1297.5 1.14× 103 70.42
DC-MOSEK 13.9 85.2 5.36× 104 364.8

1000
DCProx 14.2 1048.7 5.74× 103 412.6
DCProx (Euc.) 14.2 1362.6 6.52× 103 468.7
DC-MOSEK - - - -

Table 4: Results for problem (17) (p = q = 3, ni = n for i ∈ [p]). Three algorithms are tested:
DCProx, DCProx with Euclidean PDHG, DCA with MOSEK as the subproblem solver. The results
are averaged over 10 synthetic datasets. ‘-’ indicates the experiments do not finish in 6 hours.

algorithm (Bregman PDHG) in the inner iteration. In the theoretical aspect, the outer itera-
tion DCA is shown to converge linearly to a global optimum under an extension of the classical
Polyak– Lojasiewicz condition; from the computational perspective, Bregman PDHG solves the
subproblem at each DCA iteration efficiently, with simple update rules and cheap per-iteration
complexity. As an application, we consider several classes of matrix optimization problems involv-
ing log-determinant functions. For these problems, linear global convergence of DCA is established
via the presented analysis, and Bregman PDHG efficiently solves the DCA subproblems by a suit-
able choice of Bregman distances. Numerical experiments are conducted to verify the efficiency
of DCProx. Future work are needed to identify infeasible and pathological DC programs in the
aforementioned applications.
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