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Abstract. This paper presents an inexact first-order proximal splitting
method for matrix optimization problems involving Euclidean distance
matrices. In the proposed method, the large number of linear (in)equality
constraints in the problems are handled efficiently by exploiting problem
structure. The presented method also replaces the Euclidean distance
matrix projection at each iteration with a low-rank approximation, and
the introduced inexactness errors are compensated by an adaptive choice
of stepsizes. We test the algorithm on the non-metric multidimensional
scaling problem, in which the proposed low-rank approximation helps
construct a low-dimensional embedding desirable for practical purposes.
Numerical results validate the efficiency and scalability of the algorithm.

Keywords: First-order methods · Proximal algorithms · Euclidean dis-
tance matrices · Dimension reduction

1 Introduction

This paper presents a first-order proximal splitting method for a class of large-
scale optimization problems involving Euclidean distance matrices (EDMs). The
problems often include a large set of linear (in)equality constraints, and have
EDMs as the optimization variable. A symmetric n×n matrix X is a Euclidean
distance matrix (EDM) if its entries can be expressed as squared pairwise Eu-
clidean distances of a set of points: there exist vectors y1, . . . , yn such that

Xij = ∥yi − yj∥2, i, j = 1, . . . , n. (1)

The set of points {y1, . . . , yn} ⊂ Rd is called a realization (or embedding) of the
EDM X. The set of n× n EDMs forms a convex cone Dn.

Properties and theories of EDMs have been extensively studied in linear al-
gebra; see, e.g., [14,27]. Optimization over the EDM cone also has a wide variety
of applications in graph theory [2], bioinformatics [4], signal processing [5,15,34],
machine learning [1, 10, 29, 47, 49], etc. In particular, many dimension reduction
techniques are developed to build a low-dimensional embedding that satisfies
certain application-specific constraints [1,48]. In these applications, the number
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of linear (in)equality constraints scales very quickly with the matrix size. Thus,
even when the matrix size is tractable, the huge number of linear constraints
might prevent the use of general-purpose solvers. Moreover, classical ML ap-
proaches often use the embedding as the optimization variable and formulate
the problem as a semidefinite program (SDP). But it might be more efficient to
handle the EDM structure directly. In this paper, we use the EDM matrix as
the variable, and reformulate the ML model as an EDM optimization problem.
We show that such an EDM reformulation facilitates the use of proximal split-
ting methods. These algorithms iteratively decompose the EDM optimization
problem into simpler problems, and separately handle the EDM conic constraint
and other application-specific constraints. At each iteration, the conic constraint
requires projection onto the (reduced) EDM cone, while the linear constraints
can be handled efficiently by exploiting specific problem structure. Therefore,
proximal methods can address the scalability concern mentioned in [1, 48], and
are able to solve large-scale EDM optimization problems that cannot be handled
by general-purpose solvers.

Moreover, in these problems, a solution corresponding to a low-dimensional
embedding is of great interest. Thus, a regularization term is often added to pro-
mote low rank [1,29,50]. In comparison, for the EDM reformulation, it is tempt-
ing to replace the EDM projection at each iteration of the proximal method with
a low-rank approximation. The modified algorithm then generates a sequence of
low-rank matrices, and retrieves a low-dimensional realization at optimum. On
the other hand, however, such modification introduces inexactness errors and
in our case, the errors are not necessarily summable. Thus, classical analyses of
inexact proximal algorithms cannot provide convergence guarantees, and new
techniques and analyses are needed for the modified (inexact) proximal method.

Contributions. In this work, we study an inexact primal–dual proximal split-
ting method. In the presented algorithm, the inexactness errors are not necessar-
ily summable (as required in most previous work on inexact optimization meth-
ods) and are compensated by an adaptive choice of stepsizes at each iteration.
The proposed algorithm is applicable to a wide variety of convex optimization
problems (not limited to EDM optimization), and is of independent interest as
a first-order proximal method.

As an example, we apply the proposed method to non-metric multidimen-
sional scaling (NMDS), a classical ML model for dimension reduction. Our
method handles the large number of linear constraints efficiently by exploit-
ing problem structure. Moreover, motivated by the need of a low-rank EDM
solution, our method replaces the EDM projection at each iteration with a low-
rank approximation. Although such modification introduces inexactness errors,
convergence is still guaranteed by our analysis. Numerical experiments are con-
ducted to verify the efficiency and scalability of the proposed algorithm.

Outline. The rest of the paper is organized as follows. The proposed algorithm,
iPDHG, is presented and analyzed in Section 2. In Section 3, we apply the pro-
posed method to NMDS, and explain how to further improve the efficiency of
iPDHG by exploiting data structure. Section 4 contains numerical results.
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2 Inexact preconditioned PDHG with line search

This section presents the inexact preconditioned primal–dual hybrid-gradient
method with line search (short: iPDHG). iPDHG solves a general form of nons-
mooth, convex problems, and is of independent interest as a proximal method.

2.1 Inexact proximal operators
The optimization problem studied in this paper has the canonical form

minimize f(x) + g(Ax), (2)

where f , g are closed convex functions and potentially nonsmooth. This gen-
eral problem is a useful formulation for many important structures arising from
various large-scale applications in machine learning, signal and image process-
ing [8,12,18,25,35]. In the general problem (2), the structure of the nonsmooth
function f (and g) is often exploited via its (preconditioned) proximal operator :

proxP
f (y, a) = argmin

x

(
f(x) + ⟨a, x⟩+ 1

2∥x− y∥2P
)
, (3)

where P ≻ 0. When P = I, it reduces to the classical proximal operator [32],
and the preconditioner P is often added to better capture the structure of f .

For many convex functions, the computation of their proximal operators
is expensive and often involves solving a nontrivial convex subproblem. This
motivates the use of inexact proximal operators [3,16,30,37,38,42]. In this paper,
we define the inexact proximal operator x̂ ≈ϵ prox

P
f (y, a) to satisfy [16,30,37]

f(u) ≥ f(x̂) + ⟨u− x̂, P (y − x̂) + a⟩ − ϵ for all u ∈ dom f, (4)

where ϵ > 0 is a small tolerance for inexactness. When ϵ = 0, we recover (3):
x̂ = proxP

f (y, a). To incorporate inexact prox-operators in proximal methods,
additional conditions are often needed to bound the error ϵ.

2.2 Algorithm description
Now we present the iPDHG algorithm. Select starting points x−1 = x0 ∈ dom f
and z0 ∈ dom g∗. For k = 0, 1, . . ., repeat:

xk+1 = xk + θk(xk − xk−1) (5a)

zk+1 ≈ϵk proxQ
σkg∗(zk,−Axk+1) (5b)

xk+1 = proxP
τkf

(xk, τA
T zk), (5c)

where g∗(z) = supy (⟨y, z⟩ − g(y)) is the convex conjugate of g∗, and the error ϵk
in z-update must satisfy

ϵk ≤ η
2σk

∥zk+1 − zk∥2Q. (6)

The parameters τk, σk, θk are determined by a backtracking line search. We
select the initial parameters θ̄−1 = 1, τ−1 > 0, σ−1 > 0, and tolerance 0 < η <
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δ ≤ 1. To start line search at iteration k, we choose θ̄k ∈ [1,
√
1 + θk−1]. For

i = 0, 1, 2, . . ., we set θk = 2−iθ̄k, τk = θkτk−1, σk = θkτk−1, and compute xk+1,
zk+1, xk+1 using (5). If

⟨zk+1 − zk, A(xk+1 − xk+1)⟩ ≤ 1
2τk

∥xk+1 − xk∥2P + δ−η
2σk

∥zk+1 − zk∥2Q, (7)

we accept the computed iterates xk+1, xk+1, zk+1 and stepsizes τk, σk, and
terminate the line search. If (7) does not hold, we increment i and continue
the line search. In practice, δ is chosen as one, and δ < 1 is only needed for
some convergence analysis (see Theorem 1). The constant η is used to control
the error bound on ϵk so that the inexactness error can be compensated by a
smaller stepsize chosen in (7). The convergence analysis can be easily extended
to handle the case where η varies in different iterations (as ηk).

The iteration (5) with ϵk = 0 is called the preconditioned primal–dual hybrid-
gradient (PDHG) method, and has been widely studied in the literature [7,9,11].
The error bound condition (6) is new and different from the conditions used in
most inexact proximal methods. In particular, it does not require the errors are
summable (i.e.,

∑
k ϵk < ∞). Instead, the error is required to be bounded at

each iteration, and convergence is guaranteed via an adaptive choice of stepsizes.
The condition (6) is similar to the one used in [30], but iPDHG has substantial
difference from the algorithm proposed in [30]. In [30], the inexactness error
is due to an early-stopped subproblem solver while for problems in Section 3,
an inexact prox-evaluation is motivated by the need for a low-rank solution. In
addition, the paper [30] only studies the case P = I and Q = AAT , and their
analysis requires f to be strongly convex. In comparison, our convergence results
hold for any preconditioners and for general convex problems (2).

2.3 Convergence analysis

We now present the analysis of iPDHG, of which the key idea follows [23,24,31].
We start with a lemma that guarantees the line search exits at each iteration.

Lemma 1. The stepsizes τk, σk generated by iPDHG are bounded below:

τk ≥ τmin = min
{
τ−1,

√
δ−η

2
√
β∥A∥

}
, σk ≥ βτmin, (8)

for all k ∈ N≥1, where β := σ−1/τ−1, and ∥A∥ := supu̸=0 ∥Au∥Q−1/∥u∥P .

Proof. First note that the exit condition (7) holds if
√
σkτk∥A∥ ≤

√
δ − η:

⟨zk+1 − zk, A(xk+1 − xk+1)⟩ ≤ ∥A∥∥zk+1 − zk∥Q∥xk+1 − xk+1∥P

≤
√
σkτk∥A∥
δ−η

(∥xk+1−xk+1∥2
P

τk

(δ−η)∥zk+1−zk∥2
Q

σk

)1/2
≤ 1

2τk
∥xk+1 − xk+1∥2P + (δ−η)

2σk
∥zk+1 − zk∥2Q.

Based on this observation, we use induction to establish the lower bounds (8).
Suppose τk−1 ≥ τmin and σk−1 ≥ σmin, which holds at k = 0. The first value
of θk tested in the line search is θk = θ̄k ≥ 1. If this value is accepted, then

τk = θ̄kτk−1 ≥ τk−1 ≥ τmin, σk = θ̄kσk−1 ≥ σk−1 ≥ σmin.
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If θ = θ̄k is rejected, one or more backtracking steps are taken. Denote by θ̃
the last rejected value. Then, θ̃√σk−1τk−1∥A∥ >

√
δ − η, and the accepted θk

satisfies
θk = θ̃

2 >
√
δ−η

2
√
σkτk∥A∥ =

√
δ−η

2τk
√
β∥A∥ .

Thereby, it holds that τk = θkτk−1 >
√
δ−η

2
√
β∥A∥ ≥ τmin, and σk = βτk ≥ βτmin,

which completes the proof.

Theorem 1. If η ∈ (0, 1), the iterates {(xk, zk)} generated by iPDHG converge
to a pair of primal–dual optimal solutions (x⋆, z⋆).

Proof. The optimality conditions for the updates (5b) and (5c) imply that

g∗(zk+1)− g∗(z) ≤ 1
σk

⟨z − zk+1, zk+1 − zk⟩Q − ⟨z − zk+1, Axk+1⟩+ ϵk (9)

f(xk+1)− f(x) ≤ 1
τk
⟨xk+1 − xk, x− xk+1⟩P + ⟨zk+1, A(x− xk+1)⟩ (10)

for all (x, z) ∈ dom f × dom g∗. Then, at previous iteration, it holds that

f(xk)− f(x) ≤ 1
τk−1

⟨xk − xk−1, x− xk⟩P + ⟨zk, A(x− xk)⟩

= θk
τk
⟨xk − xk−1, x− xk⟩P + ⟨zk, A(x− xk)⟩

for all x ∈ dom f . We evaluate this inequality at x := xk+1 and add it to the
inequality at x := xk−1 multiplied by θk:

(1 + θk)f(xk)− θkf(xk−1)− f(xk+1)

≤ θk
τk
⟨xk − xk−1, xk+1 − xk+1⟩P + ⟨zk, A(xk+1 − xk+1)⟩

= 1
τk
⟨xk+1 − xk, xk+1 − xk+1⟩+ ⟨zk, A(xk+1 − xk+1)⟩

= 1
2τk

(
∥xk+1 − xk∥2P − ∥xk+1 − xk∥2P − ∥xk+1 − xk+1∥2P

)
+ ⟨zk, A(xk+1 − xk+1)⟩, (11)

where in the second step we use xk+1 = xk + θk(xk − xk−1).
For notation simplicity, we define

F (x) = f(x)− f(x⋆)− ⟨z⋆, A(x− x⋆)⟩, G(z) = g∗(z)− g∗(z⋆)− ⟨z − z⋆, Ax⋆⟩.

Both functions are nonnegative for all (x, z) ∈ dom f×dom g∗, because (x⋆, z⋆)
is a pair of primal–dual optimal solutions. Then, adding (9) with z := z⋆, (10)
with x := x⋆, and (11) gives

τk
(
(1 + θk)F (xk)− θkF (xk−1) +G(zk+1)

)
= (1 + θk)f(xk)− θkf(xk−1)− f(x⋆) + g∗(zk+1)− g∗(z⋆)

≤ 1
2

(
∥x⋆ − xk∥2P − ∥xk+1 − xk∥2P − ∥x⋆ − xk+1∥2P − ∥xk+1 − xk+1∥2P

)
+ 1

2β

(
∥z⋆ − zk∥2Q − ∥z⋆ − zk+1∥2Q − ∥zk+1 − zk∥2Q

)
+ τk⟨zk+1 − zk, A(x̄k+1 − xk+1)⟩+ ϵk. (12)
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The last two terms on the right-hand side can be further bounded using the exit
condition in line search (7) and the error bound (6):

τk⟨zk+1 − zk, A(xk+1 − xk+1)⟩+ ϵk ≤ 1
2∥xk+1 − xk+1∥2P + δ

2β ∥zk+1 − zk∥2Q.

Substituting this upper bound into (12) and telescoping:

τk(1 + θk)F (xk) +
1
2∥x

⋆ − xk+1∥2P + 1
2β ∥z

⋆ − zk+1∥2Q
≤ τk−1(1 + θk−1)F (xk−1) +

1
2∥x

⋆ − xk∥2P + 1
2β ∥z

⋆ − zk+1∥2Q
− 1

2∥xk+1 − xk+1∥2P − 1−δ
2β ∥zk+1 − zk∥2Q

≤ τ−1F (x−1) +
1
2∥x

⋆ − x0∥2P + 1
2β ∥z

⋆ − z0∥2Q

− 1
2

k∑
j=0

(
∥xj+1 − xj+1∥2P + 1−δ

β ∥zj+1 − zj∥2Q
)
. (13)

This shows that the sequences {xk} and {zk} are bounded, and
1

τk−1
∥xk − xk−1∥P = 1

τk
∥xk − xk∥P → 0, ∥zk+1 − zk∥Q → 0. (14)

Let (x̂, ẑ) be a limit point of a converging subsquence (xki , zki). Then, the proof
for the uniqueness of (x̂, ẑ) follows from standard analysis for PDHG [23, §3.3.4],
and is omitted here due to space limit.

3 Application to EDM optimization
In this section, we apply iPDHG to EDM optimization problems. We take the
generalized non-metric multidimensional scaling (NMDS) problem as an example
here, and many other potential applications of the proposed iPDHG exist in
machine learning [10,43,47–49], graph signal processing [34], etc.

Section 3.1 gives a brief review of EDMs. For more properties of EDMs, we
refer interested readers to recent surveys [15,27] and the book [14]. Then in Sec-
tion 3.2, we reformulate NMDS as an EDM problem and then apply iPDHG. We
explain in detail how to further improve efficiency by exploiting data structure.

3.1 Euclidean distance matrices
The definition (1) of an EDM can be rewritten in matrix notation as X =

diag(Y )1T +1diag(Y )T − 2Y , where Y =
[
y1 y2 · · · yn

]T [
y1 y2 · · · yn

]
is pos-

itive semidefinite (PSD) (i.e., Y ⪰ 0). Therefore, X is an EDM if and only if
there exists a real symmetric matrix Y ∈ Sn such that

Y ⪰ 0, diag(Y )1T + 1diag(Y )T − 2Y = X, (15)

where diag(Y ) returns the diagonal entries of Y as a column vector. We refer
to the matrix Y that satisfies (15) as a Gram matrix of X.

An equivalent representation of EDMs is due to Schoenberg [39, 40]: X is
an EDM if and only if diag(X) = 0 and cTXc ≤ 0 for all c with 1T c = 0.
Schoenberg’s conditions can be rewritten as

diag(X) = 0, V TXV ⪯ 0, (16)
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where V is any matrix whose columns span the orthogonal complement of 1, i.e.,
range(V ) = {c ∈ Rn | 1T c = 0}. A common choice of V is V = I − (1/n)11T .

We denote by Dn
0 the reduced EDM cone: Dn

0 = {X ∈ Sn | V TXV ⪯
0}. Then, the EDM cone can be written as Dn = {X ∈ Dn

0 | diag(X) =
0}. Projection onto the reduced EDM cone Dn

0 is much easier than projec-
tion onto Dn, and the computational complexity is dominated by an eigen-
decomposition [17,19,21,45].

In this section, it would be more convenient to represent an matrix variable
by a vector variable. Given X ∈ Sn, we define

vec(X) =
(
X11, . . . , Xnn,

√
2X21, . . . ,

√
2Xn1,

√
2X32, . . . ,

√
2Xn,n−1

)
.

The function vec maps X ∈ Sn to a vector of length p = n(n+1)
2 that contains

the lower triangular entries of X. Note that the strictly lower triangular entries
of X are scaled by

√
2. The scaling ensures that tr(XY ) = ⟨vec(X),vec(Y )⟩.

3.2 Generalized non-metric multidimensional scaling

Non-metric multidimensional scaling (NMDS) is a classical problem in statistics
and machine learning [13,28,41], and it aims to find a low-dimensional realization
such that the Euclidean distances between the realization points satisfy a pre-
determined ordering. In this section, we consider the following generalization of
NMDS [1], which is formulated as a semidefinite program (SDP):

minimize
∑

(i,j,s,t)∈Ω wijst + λ tr(Y )

subject to Yss − 2Yst + Ytt − Yii + 2Yij − Yjj ≥ wijst, (i, j, s, t) ∈ Ω
wijst ≤ 1, (i, j, s, t) ∈ Ω
1TY 1 = 0, Y ⪰ 0

(17)

with variables Y ∈ Sn and w ∈ Rm (with m = |Ω|). The variable Y is the
Gram matrix of the realization {y1, . . . , yn} ⊂ Rd (with n ≫ d). The second
term in the objective, trY =

∑
i λi(Y ), is the sum of eigenvalues and serves

as a convex regularization promoting low rank (or a convex relaxation for the
low-rank constraint) [1]. The first two sets of inequalities in (17) describe the soft
ordering constraints, and very often in applications, one has m = O(n2). Note
that each wijst is constrained by only two upper bounds, so at the optimum,

wijst = min{1, Yss − 2Yst + Ytt − Yii + 2Yij − Yjj}, for (i, j, s, t) ∈ Ω.

Since the variable Y in (17) is the Gram matrix in an EDM parametrization,
the problem is more easily written in terms of the corresponding EDM X with
elements Xij = Yii − 2Yij + Yjj . Using Schoenberg’s parametrization (16) and
the vector notation x = vec(X), we can write (17) equivalently as

minimize
∑m

k=1 max{0, 1 + (Bx)k}+ λ1Tx
subject to Cx = 0, x ∈ vec(Dn

0 ),
(18)

where the optimization variable is x ∈ Rp with p = n(n+1)
2 . The data matrix B

has size m × p, and each row of B represents a tuple (i, j, s, t) ∈ Ω. If the kth
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row represents (i, j, s, t), then (Bx)k = Xij−Xst for x = vec(X). For simplicity,
a factor 1/(

√
2n) was absorbed in the parameter λ in (18).

To apply iPDHG, we formulate problem (18) in the form of (2) with

f(x) = δC(x), g(u, v) = g1(u) + λ1T v + δvec(Dn
0 )
(v),

C = {x | Cx = 0}, g1(u) =

m∑
k=1

max{0, 1 + uk}, A =

[
B
I

]
.

(19)

The basic PrePDHG iterations ((5) with ϵk = 0) are

xk+1 = xk + θ(xk − xk−1) (20a)

z
(1)
k+1 = proxσg∗

1
(z

(1)
k + σBxk+1) (20b)

z
(2)
k+1 = z

(2)
k + σxk+1 −Πvec(Dn

0 )

(
z
(2)
k + σxk+1 − λ

σ1
)

(20c)

xk+1 = proxP
τf

(
xk, τ(B

T z
(1)
k+1 + z

(2)
k+1)

)
. (20d)

The z(1)-update is separable and has a closed-form formula, and the z(2)-update
involves projection onto vec(Dn

0 ) (dominated by an eigen-decomposition). Both
updates are simple, and preconditioning does not help improve efficiency.

Preconditioning. We discuss one preconditioner for x-update: P = BTB+γI.
This preconditioner has been widely used in applications arising from image
processing and inverse problems [22, 30, 36]. The positive constant γ is added
to guarantee the positive-definiteness of P and to improve numerical stability.
With this choice of P , the x-update involves solving the subproblem

minimize δC(x) +
1
2∥Bx−Bxk∥2 + γ

2τ ∥x− xk + τ√
γ (B

T z
(1)
k + z

(2)
k )∥2

with variable x ∈ Rp. Note that the vector (Bx)k = Xij −Xst does not contain
the first n entries of x. Thus, the first n entries of xk+1 are zero, and the other
entries equal to the last n(n−1)

2 entries of the vector

x̃ = xk − τ√
γ (B

T z
(1)
k + z

(2)
k ) + τ√

γB
T (BBT + γI)−1B(BT z

(1)
k + z

(2)
k ).

The matrix BBT + γI does not change during optimization. So we only need to
factorize the matrix once and reuse the factor in every x-update. This matrix is
also very sparse (sparser than BTB) as each row of B has only two entries.

In comparison, when P = I, the x-update reduces to a projection on C; i.e.,
setting the first n elements to zero. Thus, preconditioning slightly increases the
computation complexity, and leads to an improvement in the numerical per-
formance. In particular, we observe in experiments (see Section 4) that with
preconditioning, the total number of PDHG iterations dramatically decreases.

Low-rank approximation as inexact prox-operator. It is well known that
if an EDM X ∈ Dn has a realization in Rd (d < n), then the rank of X is at
most d + 2 [20, Thm. 5]. Thus, if problem (17) has a d-dimensional realization
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at optimum, then the EDM problem (18) has a solution of rank at most d+ 2.
This motivates us to replace the projection to Dn

0 involved in (20c) with a rank-
(d + 2) PSD approximation: we only keep the leading (d + 2) eigenvalues and
remove the rest. In this case, the advantage of a low-rank PSD approximation
is threefold. First, this modification decreases the computational complexity in
z(2)-update. Also, the low-rank regularization term trY is no longer needed, so
we avoid tuning λ, which is difficult but critical in practice [1]. The third benefit
is on practical performance. It is observed that the use of low-rank approxima-
tion often helps to generate an embedding that is “visually clearer”; see results
in Section 4. This is because iPDHG is more likely to obtain a low-rank EDM
solution.

On the other hand, however, low-rank approximation introduces inexactness
error. This error is actually computable, and the complexity is dominated by
an eigen-decomposition. In practice, however, it is not worth the effort. In the
implementation, we fix η in advance, and check the condition (6) at each iter-
ation. We only take an inexact update if the condition is satisfied; otherwise
we perform an exact z(2)-update at this iteration. In all the numerical experi-
ments in Section 4, it is observed that the condition (6) is always satisfied, and
iPDHG generates a sequence of low-rank iterates converging to an EDM solution.

4 Numerical experiments

We evaluate the performance of iPDHG applied to NMDS (18). The numerical
results verify that the proposed method efficiently solves large-scale EDM op-
timization problems that cannot be handled by general-purpose solvers (e.g.,
SeDuMi [44], SDPT3 [46]). In addition, it is observed that iPDHG generates
virtually better realizations with inexact (low-rank) updates than without.

The experiments are carried out in MATLAB 2021b on a desktop with
an Intel Core i5 2.4GHz CPU and 16GB RAM. We compare iPDHG with the
SCS solver [33], which is built on the alternating direction method of multipli-
ers (ADMM) [6] and is able to solve large-scale quadratic cone programs. Four
datasets are used in the experiments: Scurve, Cifar-10, MNIST, and EMNIST.
Scurve is a small dataset suggested in [26], and is used here for visualization of
the realizations. In our experiments we only take part of each dataset. (Recall
that the most expensive step in iPDHG is the eigen-decomposition, so for iPDHG,
the scale of solvable problems is limited by the size of matrices for which an
eigen-decomposition can be performed on a desktop.) For all the experiments,
we set the initial embedding dimension d = 2, the control parameter for inex-
actness η = 0.5, and the parameter in the preconditioner γ = 0.1.

Table 1 reports the number of iterations and CPU time for SCS and all vari-
ants of iPDHG. Our method (iPDHG) outperforms SCS in terms of both the num-
ber of iterations and runtime. It is also shown that preconditioning significantly
reduces the number of iterations, and thus the computation time. Moreover, the
use of inexact updates does not affect the number of iterations much. Recall
that only a small portion of eigenvalues is needed in inexact updates, so for
larger datasets, iPDHG converges faster than its exact variant. We also note that
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data n m algo precond. inexact number of
iterations

CPU time
(in sec.)

Cifar-10 3000 4, 498, 499

iPDHG Y Y 1, 026 9.43× 103

iPDHG Y N 974 9.40× 103

iPDHG N Y 18, 625 2.82× 105

SCS - - 1, 328 1.64× 104

MNIST 5000 12, 497, 499

iPDHG Y Y 1, 563 5.45× 104

iPDHG Y N 1, 494 6.03× 104

iPDHG N Y 30, 054 1.62× 106

SCS - - 1, 998 9.28× 104

EMNIST 8000 31, 995, 999

iPDHG Y Y 1, 154 2.27× 105

iPDHG Y N 1, 026 3.64× 105

iPDHG N Y 20, 245 7.26× 106

SCS - - - OOM
Table 1. Four algorithms are tested for NMDS on three datasets. n indicates matrix
size and m indicates the number of linear constraints. The 5th and 6th columns indicate
whether preconditioning and inexact updates are used. OOM indicates out of memory.
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Fig. 1. Plot of Scurve realizations generated by iPDHG, iPDHG without precondition-
ing, exact PrePDHG ((5) with ϵk = 0), and SCS, respectively.

SCS fails for EMNIST dataset (n = 8000) while iPDHG is able to solve it effi-
ciently. This could be because SCS needs to generate a large number of auxiliary
variables to represent the EDM constraint, so the solver runs out of memory.

For the illustrative dataset Scurve, we plot the constructed realizations from
iPDHG, PrePDHG and SCS in Fig. 1. We see that algorithms with inexact (low-
rank) updates generate a clearer and less noisy “S” curve compared with algo-
rithms with exact prox-evaluations.

5 Conclusion
We present a primal–dual proximal algorithm (iPDHG) that allows for inexact
prox-evaluations, and apply it to Euclidean distance matrix (EDM) optimization
problems. The inexact prox-evaluation is motivated by the existence of a low-
rank EDM solution, and backtracking line search is used to compensate the
inexactness errors and to guarantee convergence. The proposed method is then
applied to the EDM reformulation of non-metric multidimensional scaling. Data
structure is exploited to further improve the efficiency and scalability of iPDHG,
and numerical experiments are conducted to verify its superiority. Future work
is needed to address the scalability of eigen-decomposition used in the algorithm.
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