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Abstract

This paper presents an inexact first-order proximal splitting method for matrix optimization
problems involving Euclidean distance matrices. In the proposed method, the large number of
linear (in)equality constraints in the problems are handled efficiently by exploiting data struc-
ture. The presented method also replaces the Euclidean distance matrix projection at each iter-
ation with a low-rank approximation, and the introduced inexactness errors are compensated by
an adaptive choice of stepsizes. We test the presented algorithm on non-metric multidimensional
scaling and maximum variance unfolding problems. In these problems, the proposed low-rank
approximation helps construct a low-dimensional embedding desirable for practical purposes.
Numerical results also validate the efficiency and scalability of the presented algorithm.

1 Introduction

This paper presents a first-order proximal splitting method for a class of large-scale optimization
problems involving Euclidean distance matrices (EDMs). These problems often include a large set
of linear equality constraints, and have EDMs as the optimization variable. A symmetric n × n
matrix X is a Euclidean distance matrix (EDM) if its entries can be expressed as squared pairwise
Euclidean distances of a set of points: there exist vectors y1, . . . , yn such that

Xij = ∥yi − yj∥2, i, j = 1, . . . , n. (1)

The set of points {y1, . . . , yn} ⊆ Rd is called a realization (or embedding) of the EDM X. The set
of n× n EDMs forms a convex cone Dn.

Properties and theories of EDMs have been extensively studied in linear algebra and matrix
analysis (see, e.g., [18,35]). Optimization over the EDM cone also has a wide variety of applications
in graph theory [4], bioinformatics [6], signal processing [7, 22], machine learning [1, 13, 37, 55, 58],
etc. In particular, many dimension reduction techniques are developed to build a low-dimensional
embedding that satisfies certain application-specific constraints [1, 57]. In these applications, the
number of linear (in)equality constraints scales very quickly with the matrix size. Thus, even when
the matrix size is tractable, the huge number of linear constraints might prevent the use of general-
purpose solvers. Moreover, classical ML approaches often use the embedding as the optimization
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variable and formulate the problem as a semidefinite program (SDP). But it might be more effi-
cient to handle the EDM structure directly. In this paper, we use the EDM matrix as the variable,
and reformulate the ML model as an EDM optimization problem. We show that such an EDM
reformulation facilitates the use of proximal splitting methods. These algorithms iteratively decom-
pose the EDM optimization problem, and separately handle the EDM conic constraint and other
application-specific constraints. At each iteration, the conic constraint requires projection onto the
(reduced) EDM cone, while the linear constraints can be handled efficiently by exploiting specific
problem structure. Therefore, proximal methods can address the scalability concern mentioned
in [1,57], and are able to solve large-scale EDM optimization problems that cannot be handled by
general-purpose solvers.

Moreover, in these problems, a solution corresponding to a low-dimensional embedding is of
great interest. Thus, a regularization term is often added to promote low rank [1, 37, 59]. In
comparison, for the EDM reformulation, it is tempting to replace the EDM projection at each
iteration of the proximal method with a low-rank approximation. The modified algorithm then
generates a sequence of low-rank matrices, and retrieves a low-dimensional realization at optimum.
On the other hand, however, such modification introduces inexactness errors and in our case, the
errors are not necessarily summable. Thus, classical analyses of inexact proximal algorithms cannot
provide convergence guarantees, and new techniques and analyses are needed for the modified
(inexact) proximal method.

Contributions. In this paper, we study an inexact primal–dual first-order proximal method.
In the presented algorithm, the inexactness errors are not necessarily summable (as required in
most previous work on inexact optimization methods), and are compensated by an adaptive choice
of stepsizes at each iteration. The proposed algorithm is applicable to a wide variety of convex
optimization problems (not limited to EDM optimization), and is of independent interest as a
first-order proximal method.

As an example, we apply the proposed method to non-metric multidimensional scaling (NMDS)
and maximum variance unfolding (MVU), two classical ML models for dimension reduction. The
ML models are formulated as EDM optimization problems, and the presented proximal method
handles the EDM conic constraint and the linear constraints separately at each iteration. In par-
ticular, the method can exploit specific problem structure to handle the large number of linear
constraints efficiently. Moreover, motivated by the need of a low-rank EDM solution, our method
replaces the EDM projection at each iteration with a low-rank approximation. Although such mod-
ification introduces inexactness errors, convergence is still guaranteed by our analysis. Numerical
experiments are conducted to verify the efficiency and scalability of the proposed algorithm. In
particular, our method solves large-scale EDM problems that cannot be handled by general-purpose
solvers, and returns a low-rank EDM solution desirable for ML applications.

Related work. The research on EDMs dates back to the early 1900s [47, 61], and is of great
importance for both theoretical and practical purposes; see [18, 22, 35] for recent surveys. Besides
the aforementioned applications, EDMs have been extensively used in sensor network localization
[3,7,21]. Customized algorithms for EDM optimization problems range from interior-point methods
[6, 7] to various first-order algorithms [19,20,60,62,63].

First-order primal–dual proximal methods can solve a general form of nonsmooth, convex opti-
mization problems, and their development has become an active research area; see [14,16] for recent
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surveys. The algorithm studied in this paper extends the well-known primal–dual hybrid gradient
(PDHG) method [10, 24, 44] to include line search and inexact evaluation of proximal operators.
Line search in PDHG is first proposed in [39], and soon becomes popular due to its flexibility and
promising performance. For example, the line search technique is extended for generalized proximal
operators [9,31] and for a more general type of problems [32]. Inexact prox-evaluation is also exten-
sively studied for many proximal methods [5, 23, 38, 46, 50], and various definitions and conditions
are proposed for inexact proximal operators; see [45] for a brief summary and comparison.

Outline. The rest of the paper is organized as follows. Section 2 summarizes the basic properties
of EDMs. In Section 3, we present two machine learning applications and reformulate them into
EDM optimization problems. For each example problem, we explain how the main steps in primal–
dual proximal methods can be simplified and customized by exploiting problem structure and
properties of EDMs. The proposed inexact preconditioned primal–dual hybrid gradient method
(inexact PDHG) and its convergence are discussed in Section 4, and Section 5 contains results of
numerical experiments.

2 Euclidean distance matrices

In this section, we review some basic properties of Euclidean distance matrices (EDMs). In partic-
ular, we introduce two parametrizations (or representations) of EDMs that will help us reformulate
the optimization problems in Section 3. For more details and applications of EDMs, we refer
interested readers to recent surveys [22,35] and the book [18].

We denote by Sn the set of symmetric n×n matrices, and by Sn+ the set of symmetric, positive
semidefinite (PSD) n× n matrices. The inequality X ⪰ 0 (X ≻ 0) means X is PSD (PD). We use
the notation ⟨x, y⟩ = xT y for the standard inner product of vectors x and y, and ∥x∥ = ⟨x, x⟩1/2
for the Euclidean norm of a vector x. For any positive definite matrix P , the quadratic form for

vectors x and y is ⟨x, y⟩P = ⟨x, Py⟩, and the associated quadratic norm is ∥x∥P = ⟨x, x⟩1/2P . The
diag operator takes the diagonal elements of a matrix and forms a column vector. The notation 1
indicates the vector of all ones with compatible size.

Gram matrix parametrization. Expanding the square in the definition (1) gives Xij = yTi yi+
yTj yj − 2yTi yj , and then it follows that in matrix notation, X is an EDM if and only if

X = diag(Y )1T + 1diag(Y )T − 2Y (2)

for some PSD matrix Y (i.e., the Gram matrix Y =
[
y1 y2 · · · yn

]T [
y1 y2 · · · yn

]
). Hence,

we have the following characterization of EDMs: X ∈ Dn if and only if there exists a matrix Y ∈ Sn
such that

Y ⪰ 0, diag(Y )1T + 1diag(Y )T − 2Y = X. (3)

We refer to the matrix Y that satisfies (3) as a Gram matrix of X.

Schoenberg’s parametrization. An equivalent characterization of EDMs is due to Schoen-
berg [47, 48]: X is an EDM if and only if diag(X) = 0 and cTXc ≤ 0 for all c with 1T c = 0.
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The second condition states that X is negative semidefinite on the orthogonal complement of the
n-vector 1. Schoenberg’s conditions can be rewritten in the matrix form as

diag(X) = 0, V TXV ⪯ 0, (4)

where V is any matrix whose columns span the orthogonal complement of 1, i.e., range(V ) = {c ∈
Rn | 1T c = 0}. A common choice of such a matrix V is V = I−(1/n)11T ∈ Sn. With this choice, it
can be shown that Y = −(1/2)V TXV is a valid Gram matrix of X, and the Gram matrix satisfies
1TY 1 = 0; see, e.g., [56, §11.2].

We denote by Dn
0 the reduced EDM cone, i.e., the set of matrices that satisfies the second of

Schoenberg’s conditions:
Dn
0 = {X ∈ Sn | V TXV ⪯ 0}.

In other words, Dn = {X ∈ Dn
0 | diag(X) = 0}. Projection onto the reduced EDM cone Dn

0 is
much more easier than projection onto Dn, and the computational complexity is dominated by an
eigen-decomposition [25,27,29,53]. To see this, consider the optimization problem

minimize ∥X −A∥2F
subject to X ∈ Dn

0
(5)

with variable X ∈ Sn and data A ∈ Sn. We first define

U =
1

n+
√
n

[
(1 +

√
n)1T

11T − (n+
√
n)I

]
∈ Rn×(n−1), e =

1√
n
1 ∈ Rn, Ũ =

[
U e

]
∈ Rn×n.

By definition U ∈ Rn×(n−1) has orthonormal columns that span the orthogonal complement of 1,
and Ũ is an n × n orthogonal matrix. Then the constraint X ∈ Dn

0 in (5) can be replaced by
UTXU ⪯ 0, and the optimal solution is the projection of A ∈ Sn on Dn

0 , given by

ΠDn
0
(A) = Ũ

[
−ΠSn−1

+
(−UTAU) UTAe

eTAU eTAe

]
ŨT ,

where −ΠSn−1
+

(−UTAU) = ΠSn−1
−

(UTAU) is the projection of UTAU on the negative semidefinite

cone, obtained by replacing the positive eigenvalues of UTAU by zero.

Vector notation. In this paper it would be more convenient to represent an matrix variable by
a vector variable. For a symmetric n× n matrix X, we define

vec(X) =
(
X11, X22, . . . , Xnn,

√
2X21, . . . ,

√
2Xn1,

√
2X32, . . . ,

√
2Xn2, . . . ,

√
2Xn,n−1

)
.

The function vec maps X to a vector of length p = n(n+ 1)/2 that contains the lower triangular
entries of X. The first n elements in vec(U) contains the diagonal elements of X, and the strictly
lower triangular entries are scaled by

√
2. The scaling ensures that

tr(XY ) = ⟨vec(X),vec(Y )⟩, ∥X∥F = ∥vec(X)∥.

Using x = vec(X) and Schoenberg’s parametrization (4), we can rewrite the EDM conic constraint
X ∈ Dn as x ∈ vec(Dn

0 ) and Cx = 0, where C =
[
In 0

]
∈ Rn×p.
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3 Proximal splitting methods for EDM optimization

3.1 Problem formulation

The optimization problems studied in this paper arise from machine learning and will be formulated
into the canonical form

minimize f(x) + g(Ax), (6)

where f , g are closed convex functions and potentially nonsmooth. This general problem is a useful
formulation for many important structure arising from various large-scale applications in machine
learning, signal and image processing [11,16,26,33,42].

In the general problem (6), the structure of the nonsmooth function f (and g) is often exploited
via its (preconditioned) proximal operator :

proxP
f (y, a) = argmin

x

(
f(x) + ⟨a, x⟩+ 1

2∥x− y∥2P
)
,

where P ≻ 0 is positive definite. When P = I, it reduces to the classical proximal operator [40], and
the preconditioner P is added to better capture the structure of f or to reduce the computational
complexity. By definition, x̂ = proxP

f (y, a) if and only if

f(u) ≥ f(x̂) + ⟨u− x̂, P (y − x̂) + a⟩, for all u ∈ dom f. (7)

With the proximal operators of the objectives, the problem (6) can be solved efficiently by splitting
(or decomposition) methods. These methods iteratively decompose a large-scale optimization prob-
lem into smaller, simpler problems and then solve them separately. A well-known proximal splitting
method for (6) is the preconditioned primal–dual hybrid gradient (PrePDHG) method [10,24,43]:

x(k+1) = x(k) + θ(x(k) − x(k−1)) (8a)

z(k+1) = proxQ
σg∗(z

(k),−σAx(k+1)) (8b)

x(k+1) = proxP
τf (x

(k), τAT z(k+1)), (8c)

where g∗(z) = supy (⟨y, z⟩ − g(y)) is the convex conjugate of g. When θ = 1, the stepsizes τ , σ must
satisfy

√
στ∥A∥ ≤ 1, where the operator norm of A is defined as ∥A∥ = supu̸=0 ∥Au∥Q−1/∥u∥P .

Convergence analysis with these conditions can be found in [10,12,15]. Other details and discussion
on the algorithm are presented in Section 4. In the remainder of this section, we focus on the EDM
reformulation of some machine learning problems and how the reformulation can be solved efficiently
by (8). In particular, we explain how the basic iterations (8) can be simplified or customized by
exploiting problem structure or properties of EDMs.

3.2 Generalized non-metric multidimensional scaling

Non-metric multidimensional scaling (NMDS) is a classical problem in statistics and machine learn-
ing [17,36,49], and it aims to find a low-dimensional realization such that the Euclidean distances
between the realization points satisfy a pre-determined ordering. In this section, we consider a
generalization of NMDS which is able to handle incomplete or contradictory ordering [1]. The
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generalized NMDS problem can be formulated as the following SDP:

minimize
∑

(i,j,s,t)∈Ω
wijst + λ tr(Y )

subject to Yss − 2Yst + Ytt − Yii + 2Yij − Yjj ≥ 1− wijst for (i, j, s, t) ∈ Ω
wijst ≥ 0 for (i, j, s, t) ∈ Ω
1TY 1 = 0, Y ⪰ 0

(9)

with variables Y ∈ Sn and w ∈ Rm (where we denote m = |Ω|). The variable Y is the Gram
matrix of the realization {y1, . . . , yn} ⊆ Rd (with n ≫ d). Very often in applications, a desirable
dimension d is known in advance, and thus a rank-d solution of (9) yields a realization in Rd. In view
of this, the second term in the objective, trY =

∑
i λi(Y ), is the sum of eigenvalues and serves as a

convex regularization promoting low rank (or a convex relaxation for the low-rank constraint) [1].
Moreover, the first two sets of inequalities in (9) describe the soft ordering constraints, and very
often in applications, one has m = O(n2). Note each wijst is constrained by only two lower bounds,
so at the optimum,

wijst = max{0, 1− Yss + 2Yst − Ytt + Yii − 2Yij + Yjj}, for (i, j, s, t) ∈ Ω.

Since the variable Y in (9) is the Gram matrix in an EDM parametrization, the problem is
more easily written in terms of the corresponding EDM X with elements Xij = Yii − 2Yij + Yjj .
Using Schoenberg’s parametrization, we can write (9) equivalently as

minimize
∑

(i,j,s,t)∈Ω
max{0, 1 +Xij −Xst} − (λ/2) tr(V TXV )

subject to diag(X) = 0, X ∈ Dn
0 ,

where V = I − (1/n)11T . This problem can further be written in the vector form as

minimize
m∑
k=1

max{0, 1 + (Bx)k}+ λ1Tx

subject to Cx = 0, x ∈ vec(Dn
0 ).

(10)

Here the optimization variable x is a vector of length p = n(n + 1)/2. The data matrix B has
m = |Ω| rows, and each row of B represents a tuple (i, j, s, t) ∈ Ω. If the kth row represents
(i, j, s, t), then (Bx)k = Xij −Xst for x = vec(X). The regularization term trY in (9) is rewritten
in the vector form as

trY = −1
2 tr(V

TXV ) = −1
2 tr(V V TX) = −1

2 tr((I −
1
n11

T )X) = 1
2n1

TX1 = 1√
2n
1Tx,

if the diagonal elements of X are zero and x = vec(X). For simplicity, a factor 1/(
√
2n) was

absorbed in the parameter λ in (10).
To apply PrePDHG (8), we formulate the problem in the form of (6) with

f(x) = δC(x), g(u, v) = g1(u) + λ1T v + δvec(Dn
0 )
(v),

C = {x ∈ Rp | Cx = 0}, g1(u) =

m∑
k=1

max{0, 1 + uk}, A =

[
B
I

]
.

(11)
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The basic PrePDHG iterations (8) are

x(k+1) = x(k) + θ(x(k) − x(k−1)) (12a)

z
(k+1)
1 = proxσg∗1

(z
(k)
1 + σBx(k+1)) (12b)

z
(k+1)
2 = z

(k)
2 + σx(k+1) −Πvec(Dn

0 )

(
z
(k)
2 + σx(k+1) − (λ/σ)1

)
(12c)

x(k+1) = proxP
τf

(
x(k), τ(BT z

(k+1)
1 + z

(k+1)
2 )

)
. (12d)

When P = I, the x-update reduces to

x(k+1) = ΠC(x
(k) − τ(BT z

(k)
1 + z

(k)
2 ));

i.e., setting the first n elements to zero. The z1-update is separable and has a closed-form formula.
In particular, we have

proxσϕ∗(t) = max{t+ σ, 0} −max{t+ σ − 1, 0} =


0 t < −σ

t+ σ −σ ≤ t ≤ 1− σ

1 t > 1− σ,

where ϕ(t) = max{0, 1 + t}. The z2-update involves projection onto vec(Dn
0 ).

Preconditioning. The updates in z1 and z2 are simple, and preconditioning does not help to
reduce complexity or to improve efficiency. Here we discuss one preconditioner for the x-update:
P = BTB + γI. This preconditioner has been widely used in applications arising from image
processing and inverse problems; see, e.g., [30,38,43]. The positive constant γ is added to guarantee
the positive-definiteness of P and to improve numerical stability. In practice we often simply set
γ = 1. With this choice of preconditioner, the x-update (12d) involves the optimization problem

minimize δC(x) +
1
2∥Bx−Bx(k)∥2 + γ

2τ ∥x− x(k) + τ√
γ (B

T z
(k)
1 + z

(k)
2 )∥2

with variable x ∈ Rp. The function δC requires the first n entries of x to be zero, while the vector

(Bx)k = Yij − Yst does not contain x1:n. Thus, x
(k+1)
1:n = 0 and x

(k+1)
n+1:p is the last n(n− 1)/2 entries

of the vector

x̃ = argmin
x

(
1
2∥Bx−Bx(k)∥22 +

γ
2τ ∥x− x(k) + τ√

γ (B
T z

(k)
1 + z

(k)
2 )∥22

)
= x(k) − τ√

γ (B
T z

(k)
1 + z

(k)
2 ) + τ√

γ (B
TB + γI)−1BTB(BT z

(k)
1 + z

(k)
2 ) (13)

= x(k) − τ√
γ (B

T z
(k)
1 + z

(k)
2 ) + τ√

γB
T (BBT + γI)−1B(BT z

(k)
1 + z

(k)
2 ). (14)

Proof. We consider the regularized least squares problem

minimize 1
2∥Bx−Bx(k)∥22 +

γ
2τ ∥x− x(k) + τ√

γ (B
T z

(k)
1 + z

(k)
2 )∥22

with variable x ∈ Rp. With a change of variables y = x − x(k) + τ√
γ (B

T z
(k)
1 + z

(k)
2 ), the problem

becomes
minimize 1

2∥By − τ√
γ (B

T z
(k)
1 + z

(k)
2 )∥22 +

γ
2τ ∥y∥

2
2
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with variable y ∈ Rp. This is a least squares problem with Tokhonov regularization, of which the
optimal solution is given by (13). The next equation (14) follows from the identity

(BTB + γI)−1BT = BT (BBT + γI)−1

for any matrix B.

In addition, we note that each row of B has only two nonzero entries, and then we expect that
BBT is sparser than BTB. Hence the update (14) should be more efficient than (13). We also note
that the matrix BTB + γI does not change during the PrePDHG iterations. So we can factorize
the matrix once and reuse the factor in every x-update. Suppose BBT + γI = PLLTP T is the
sparse Cholesky factorization, with the permutation matrix P and sparse Cholesky factor L. Then
x̃-update (14) becomes

x̃ = x(k) − τ√
γ (B

T z
(k)
1 + z

(k)
2 ) + τ√

γB
TPL−TL−1P TB(BT z

(k)
1 + z

(k)
2 ).

The most expensive steps are forward and back substitutions with a sparse matrix L.
Comparing the x-updates with and without preconditioning, we see that preconditioning slightly

increases the computation complexity, and it is compensated by an improvement in the numerical
performance. In particular, we observe in numerical experiments that with preconditioning, the
total number of PDHG iterations dramatically decreases; see details in Section 5.

Low-rank approximation as inexact prox-operator. It is well known that if an EDMX ∈ Dn

has a realization in Rd (with d < n), then the rank of X is at most d+2 [28, Theorem 5]. Hence, if
the NMDS problem (9) has a d-dimensional realization at optimum, then the EDM problem (10)
has a solution of rank at most d+ 2. This motivates us to replace the projection onto Dn

0 involved
in (12c) with a rank-(d + 2) PSD approximation: we only keep the leading (d + 2) eigenvalues
and remove the rest. In this case, the advantage of a low-rank PSD approximation is threefold.
First, this modification decreases the computational complexity in z2-update because we only need
to compute the leading (d + 2) eigenvalues and the corresponding eigenvectors. In addition, the
low-rank regularization term trY in (9) is no longer needed. Thus, we avoid tuning the parameter
λ, which is difficult but critical in practice [1]. The third benefit is on practical performance. We
observe in experiments that the use of low-rank approximation often helps to generate an embedding
that is “visually clearer”; see results in Section 5. This is because the inexact algorithm obtains a
low-rank EDM solution while the original iterations (12) might not generate a realization in Rd.

On the other hand, however, the low-rank approximation introduces inexactness error in z2-
updates, and thus PrePDHG with constant stepsizes might not converge. To resolve this, back-
tracking line search is needed to compensate inexact prox-evaluation and to guarantee convergence;
see Section 4.

3.3 Maximum variance unfolding

Besides (generalized) NMDS, maximum variance unfolding (MVU) [57, 58] is another dimension
reduction technique widely used in computer vision and machine learning; see [18,51] for extensions
and more examples. MVU is used to analyze high-dimensional data that lie on (or near) a low-
dimensional manifold. For example, given a set of images, MVU computes a low-dimensional
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embedding of each image with the property that the Euclidean distances between nearby images
are preserved. It is shown that MVU admits the following SDP relaxation [57]

maximize tr(Y )
subject to Yii − 2Yij + Yjj = bij , (i, j) ∈ Ω

1TY 1 = 0, Y ⪰ 0,
(15)

where the variable is the Gram matrix Y ∈ Sn. Again an embedding dimension d is often known
in advance, and a low-rank solution Y is desirable for practical purpose.

We can rewrite (15) in an EDM variable X or in the vector form with variable x = vec(X) as

minimize 1
2 tr(V

TXV ) minimize −1Tx
subject to Xij = bij , (i, j) ∈ Ω subject to Bx = b

X ∈ Dn Cx = 0, x ∈ vec(Dn
0 ).

(16)

The matrix B has size m × p (recall m = |Ω|, p = n(n + 1)/2), and each row of B has only one
nonzero entry.

To apply PrePDHG (8), we further reformulate the vectorized problem in (16) into the form (6)
with f(x) = δvec(Dn

0 )
(x) − 1Tx, A = I, and g = δH is the indicator function of the set H = {x ∈

Rp | Bx = b, Cx = 0}. Then PrePDHG (8) takes the iterations

x(k+1) = x(k) + θ(x(k) − x(k−1)) (17a)

z(k+1) = z(k) + σx(k+1) −ΠH
(
z(k) + σx(k+1)

)
(17b)

x(k+1) = Πvec(Dn
0 )

(
x(k) − τz(k+1) + τ

21
)
. (17c)

For this splitting strategy, both updates in x and in z are simple, and preconditioning does not
help to reduce complexity nor to improve efficiency. But the low-rank approximation technique
discussed in Section 3.2 is still applicable to the x-update (17c).

4 Inexact preconditioned PDHG with line search

We now propose an inexact preconditioned primal–dual hybrid gradient method with line search
(short: inexact PDHG). The presented algorithm allows for inexact evaluation of proximal operators,
and at each iteration, the generated errors are compensated by a backtracking line search process.
Thus, the typical assumption on summable errors is no longer needed.

4.1 Optimality conditions and duality theory

This section summarizes some facts from convex duality theory, which will be used in algorithm
design and convergence analysis.

The dual of problem (6) is

maximize − f∗(−AT z)− g∗(z). (18)

The primal–dual optimality conditions for (6) and (18) are

0 ∈ ∂f(x) +AT z, 0 ∈ ∂g∗(z)−Ax, (19)
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where ∂f and ∂g∗ are the subdifferentials of f and g∗. Throughout the paper we assume the
optimality conditions (19) are solvable.

The convex–concave Lagrangian of (6) is defined as

L(x, z) = f(x) + ⟨z,Ax⟩ − g∗(z).

We use the convention that L(x, z) = +∞ if x /∈ dom f and L(x, z) = −∞ if x ∈ dom f and
z /∈ dom g∗. The solution x⋆, z⋆ of the optimality conditions (19) forms a saddle point of L:

inf
x
sup
z

L(x, z) = sup
z

L(x⋆, z) = inf
x
L(x, z⋆) = sup

z
inf
x
L(x, z).

In particular, L(x⋆, z⋆) is the optimal value of (6) and (18).

4.2 Algorithm description

Inexact proximal operators. For many convex functions, the computation of its proximal
operator is expensive and often involves solving a convex subproblem. This motivates the use of an
inexact proximal operator in proximal splitting methods; see, e.g., [5,23,38,45,46,50]. One classical
definition of an inexact proximal operator is

x̂ ≈ϵ prox
P
f (y, a) ⇐⇒ f(u) ≥ f(x̂) + ⟨u− x̂, P (y − x̂) + a⟩ − ϵ for all u ∈ dom f, (20)

where ϵ > 0 is a small tolerance for inexactness [23, 38, 45]. For simple convex functions, such an
error can be easily computed. For example, when f = δS is the indicator function of a unit 2-norm
ball S = {x | ∥x∥2 ≤ 1}, the error ϵ satisfies

ϵ ≥ sup
u∈S

⟨u− x̂, P (y − x̂) + a⟩ = ∥P (y − x̂) + a∥2 − ⟨x̂, P (y − x̂) + a⟩.

To guarantee the convergence of inexact proximal methods, additional conditions are needed to
bound the error ϵ. For instance, the following bound is used in [38]: ϵ ≤ (η/2)∥x̂− y∥2P .

Algorithm description. Now we present the proposed algorithm (inexact PDHG). Select starting
points x(−1) = x(0) ∈ dom f and z(0) ∈ dom g∗. For k = 0, 1, . . ., repeat the following steps:

x(k+1) = x(k) + θk(x
(k) − x(k−1)) (21a)

z(k+1) ≈ϵk proxQ
σkg∗

(z(k),−Ax(k+1)) (21b)

x(k+1) = proxP
τkf

(x(k), τAT z(k)), (21c)

where the error ϵk in z-update must satisfy

ϵk ≤ η
2σk

∥z(k+1) − z(k)∥2Q. (22)

The parameters τk, σk, θk are determined by a backtracking line search. We select the initial
parameters θ̄−1 = 1, τ−1, σ−1 > 0, and tolerance 0 < η < δ ≤ 1. To start line search at iteration k,
we choose θ̄k ∈ [1,

√
1 + θk−1]. For i = 0, 1, 2, . . ., we set θk = 2−iθ̄k, τk = θkτk−1, σk = θkτk−1, and

compute x(k+1), z(k+1), x(k+1) using (21). If

⟨z(k+1) − z(k), A(x(k+1) − x(k+1))⟩ ≤ 1
2τk

∥x(k+1) − x(k)∥2P + δ−η
2σk

∥z(k+1) − z(k)∥2Q, (23)

10



we accept the computed iterates x(k+1), x(k+1), z(k+1) and stepsizes τk, σk, and terminate the line
search. If (23) does not hold, we increment i and continue the line search. In practice δ is chosen
as one, and δ < 1 is only needed for some convergence analysis (see Theorem 1). The constant η
is used to control the error bound on ϵk so that the inexactness error can be compensated by a
smaller stepsize chosen in (23). The convergence analysis can be easily extended to handle the case
where η varies in different iterations (as ηk), but for simplicity we only consider the constant case.

The error bound condition (22) is different from the conditions used in most inexact proximal
methods. In particular, it does not require the errors are summable (i.e.,

∑
k ϵk < ∞). Instead, the

error is required to be bounded at each iteration, and convergence is guaranteed via an adaptive
choice of stepsizes. The condition (22) is similar to the one used in [38], but inexact PDHG has
substantial difference from the algorithm proposed in [38]. In [38], the inexactness error is due to
an early-stopped subproblem solver while for problems in Section 3, an inexact prox-evaluation is
motivated by the need for a low-rank solution. In addition, the paper [38] only studies the case
P = I and Q = AAT , and their analysis needs additional assumptions on the problem (6) (e.g., f
is strongly convex). In comparison, the convergence results in this paper hold for general choices
of preconditioners P , Q, and for general convex problems (6).

Application to EDM optimization. When inexact PDHG is applied to the problem (10), g =
δvec(Dn

0 )
, Q = I, and the error ϵk in z-update is due to the low-rank approximation. (Similar argu-

ment can also be made for MVU (16).) This error is actually computable, and the computational
complexity is dominated by an eigen-decomposition. In practice, however, it is not worth the effort.
In the implementation, we fix η ∈ (0, 1) in advance, and check the inexactness condition (22) at
each iteration. We only take an inexact update if the condition is satisfied; otherwise we perform
an exact z-update at this iteration. In all the numerical experiments in Section 5, we observe
that the inexactness condition (22) can always be satisfied with a pre-chosen η, and thus inexact

PDHG generates a sequence of low-rank iterates converging to an EDM solution.

4.3 Convergence analysis

We now present the convergence results for inexact PDHG. The analysis follows the ideas in [12, 31,
32,39]. We start with a lemma that guarantees the line search exits at each iteration.

Lemma 1. The stepsizes τk, σk generated by inexact PDHG are bounded below by positive constants:

τk ≥ τmin = min

{
τ−1,

√
δ − η

2
√
β∥A∥

}
, σk ≥ βτmin, for all k = 1, 2, . . . , (24)

where β = σ−1/τ−1.

Proof. First note that the exit condition (23) certainly holds if

√
σkτk∥A∥ ≤

√
δ − η.

This can be shown by the definition of the operator norm:

⟨z(k+1) − z(k), A(x(k+1) − x(k+1))⟩
≤ ∥A∥∥z(k+1) − z(k)∥Q∥x(k+1) − x(k+1)∥P

11



≤
√
σkτk∥A∥
δ − η

(
∥x(k+1) − x(k+1)∥2P

τk

(δ − η)∥z(k+1) − z(k)∥2Q
σk

)1/2

≤ 1

2τk
∥x(k+1) − x(k+1)∥2P +

(δ − η)

2σk
∥z(k+1) − z(k)∥2Q.

Based on this observation, we use induction to show the lower bounds (24). Suppose τk−1 ≥ τmin

and σk−1 ≥ σmin, which holds at k = 0. The first value of θk tested in the line search is θk = θ̄k ≥ 1.
If this value is accepted, then

τk = θ̄kτk−1 ≥ τk−1 ≥ τmin, σk = θ̄kσk−1 ≥ σk−1 ≥ σmin.

If θ = θ̄k is rejected, one or more backtracking steps are taken. Denote by θ̃k the last rejected
value. Then θ̃k

√
σk−1τk−1∥A∥ >

√
δ − η, and the accepeted θk satisfies

θk =
θ̃k
2

>

√
δ − η

2
√
σkτk∥A∥

=

√
δ − η

2τk
√
β∥A∥

.

Therefore,

τk = θkτk−1 >

√
δ − η

2
√
β∥A∥

≥ τmin, σk = βτk ≥ βτmin.

Theorem 1. If η < 1, the iterates (x(k), z(k)) generated by inexact PDHG converge to primal and
dual optimal solutions (x⋆, z⋆).

Proof. The optimality condition for the dual update (21b) implies that

g∗(z(k+1))− g∗(z) ≤ 1

σk
⟨z − z(k+1), z(k+1) − z(k)⟩Q − ⟨z − z(k+1), Ax(k+1)⟩+ ϵk (25)

for all z ∈ dom g∗. Similarly, the optimality condition for the primal update (21c) implies

f(x(k+1))− f(x) ≤ 1

τk
⟨x(k+1) − x(k), x− x(k+1)⟩P + ⟨z(k+1), A(x− x(k+1))⟩ (26)

for all x ∈ dom f . At the previous iteration we have for all x ∈ dom f ,

f(x(k))− f(x) ≤ 1

τk−1
⟨x(k) − x(k−1), x− x(k)⟩P + ⟨z(k), A(x− x(k))⟩

=
θk
τk

⟨x(k) − x(k−1), x− x(k)⟩P + ⟨z(k), A(x− x(k))⟩.

We evaluate this inequality at x := x(k+1) and add it to the inequality at x := x(k−1) multiplied
by θk:

(1 + θk)f(x
(k))− θkf(x

(k−1))− f(x(k+1))

≤ θk
τk

⟨x(k) − x(k−1), x(k+1) − x(k+1)⟩P + ⟨z(k), A(x(k+1) − x(k+1))⟩

=
1

τk
⟨x(k+1) − x(k), x(k+1) − x(k+1)⟩+ ⟨z(k), A(x(k+1) − x(k+1))⟩

12



=
1

2τk

(
∥x(k+1) − x(k)∥2P − ∥x(k+1) − x(k)∥2P − ∥x(k+1) − x(k+1)∥2P

)
+ ⟨z(k), A(x(k+1) − x(k+1))⟩. (27)

In the second step we use x(k+1) = x(k) + θk(x
(k) − x(k−1)). Adding (25) with z := z⋆, (26) with

x := x⋆, and (27) gives

(1 + θk)f(x
(k))− θkf(x

(k−1))− f(x⋆) + g∗(z(k+1))− g∗(z⋆)

≤ 1

2τk

(
∥x⋆ − x(k)∥2P − ∥x⋆ − x(k+1)∥2P − ∥x(k+1) − x(k)∥2P − ∥x(k+1) − x(k+1)∥2P

)
+

1

2σk

(
∥z⋆ − z(k)∥2Q − ∥z⋆ − z(k+1)∥2Q − ∥z(k+1) − z(k)∥2Q

)
+ ϵk

− ⟨z⋆, A(x(k+1) − x⋆)⟩+ ⟨z(k+1) − z⋆, Ax⋆⟩+ ⟨z(k+1) − z(k), A(x(k+1) − x(k+1))⟩. (28)

We define

F (x) = f(x)− f(x⋆)− ⟨z⋆, A(x− x⋆)⟩, G(z) = g∗(z)− g∗(z⋆)− ⟨z − z⋆, Ax⋆⟩.

Both functions are nonnegative for all x ∈ dom f and z ∈ dom g∗, since (x⋆, z⋆) satisfies the
optimality conditions (19). In this notation the inequality (28) can be written as

τk
(
(1 + θk)F (x(k))− θkF (x(k−1)) +G(z(k+1))

)
≤ 1

2

(
∥x⋆ − x(k)∥2P − ∥x(k+1) − x(k)∥2P − ∥x⋆ − x(k+1)∥2P − ∥x(k+1) − x(k+1)∥2P

)
+

1

2β

(
∥z⋆ − z(k)∥2Q − ∥z⋆ − z(k+1)∥2Q − ∥z(k+1) − z(k)∥2Q

)
+ τk⟨z(k+1) − z(k), A(x̄(k+1) − x(k+1))⟩+ ϵk. (29)

The last two terms on the right-hand side can be bounded using the exit condition in the line
search (23) and the error bound (22):

τk⟨z(k+1) − z(k), A(x(k+1) − x(k+1))⟩+ ϵk ≤ 1

2
∥x(k+1) − x(k+1)∥2P +

δ

2β
∥z(k+1) − z(k)∥2Q. (30)

Substituting this upper bound into (29) yields

τk(1 + θk)F (x(k)) +
1

2
∥x⋆ − x(k+1)∥2P +

1

2β
∥z⋆ − z(k+1)∥2Q

≤ τk−1(1 + θk−1)F (x(k−1)) +
1

2
∥x⋆ − x(k)∥2P +

1

2β
∥z⋆ − z(k)∥2Q

− 1

2
∥x(k+1) − x(k+1)∥2P − 1− δ

2β
∥z(k+1) − z(k)∥2Q (31)

≤ τ−1F (x(−1)) +
1

2
∥x⋆ − x(0)∥2P +

1

2β
∥z⋆ − z(0)∥2Q

− 1

2

k∑
j=0

(
∥x(j+1) − x(j+1)∥2P +

1− δ

β
∥z(j+1) − z(j)∥2Q

)
. (32)
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This shows that the sequence x(k) and z(k) are bounded and that

∥x(k) − x(k)∥P → 0, ∥z(k+1) − z(k)∥Q → 0. (33)

The second limit implies z(k+1) − z(k) → 0. It also follows that (x(k) − x(k−1))/τk−1 goes to zero
because

1

τk−1
∥x(k) − x(k−1)∥P =

θk
τk

∥x(k) − x(k−1)∥P =
1

τk
∥x(k+1) − x(k+1)∥P ≤ 1

τmin
∥x(k+1) − x(k+1)∥P

and the right-hand side goes to zero. Let (x̂, ẑ) be a limit point of a converging subsquence
(x(ki), z(ki)). From (33) it follows that x(ki) also converges to x̂, and z(ki+1) converges to ẑ.

We then show the uniqueness of x̂, ẑ by contradiction. Assume there exists another subsequence
(x(kj), z(kj)) that converges to (x̃, z̃). Then it follows that

∥x̂− x̃∥P = lim
k→∞

∥x(k) − x̃∥P = lim
k→∞

∥x(k) − x̂∥P = 0.

Hence, x̃ = x̂, and z̃ = ẑ can be shown by a similar argument.
The optimality condition for x-update at iteration k − 1 is

1

τk−1
P (x(k−1) − x(k))−AT z(k) ∈ ∂(x(k)).

The left-hand side converges to −AT ẑ and x(k) converges to x̂. It then follows from maximal
monotonicity of ∂f that −AT ẑ ∈ ∂f(x̂). Similarly, the optimality condition for z-update is

1

σk−1
Q(z(k−1) − z(k)) +Ax(k) ∈ ∂g∗(z(k)).

The left-hand side converges to Ax̂, and from maximal monotonicity of ∂g∗ it follows that Ax̂ ∈
∂g∗(ẑ). Therefore, we conclude that (x̂, ẑ) are optimal:

0 ∈
[

0 AT

−A 0

] [
x̂
ẑ

]
+

[
∂f(x̂)
∂g∗(ẑ)

]
.

We define the averaged iterates for k ≥ 1:

x(k)avg =
τ1θ1x

(0) +
∑k

i=1 τix
(i+1)

τ1θ1 + ωk
, z(k)avg =

∑k
i=1 τiz

(i+1)

ωk
,

where ωk =
∑k

i=1 τi. The convergence of
(
x
(k)
avg, z

(k)
avg

)
is given in the following theorem.

Theorem 2. The averaged iterates
(
x
(k)
avg, z

(k)
avg

)
computed from inexact PDHG satisfy

L(x(k)avg, z
⋆)− L(x⋆, z(k)avg) ≤

1

ωk

(1
2
∥x⋆ − x(1)∥2P +

1

2β
∥z⋆ − z(1)∥2Q + τ1θ1R0

)
,

where ωk =
∑k

i=1 τi, β = σ−1/τ−1, and R0 = f(x(0))− f(x⋆)− ⟨z⋆, A(x(0) − x⋆)⟩ ≥ 0.
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Proof. Combining (29) and (30) gives

τi
(
(1 + θi)F (x(i))− θiF (x(i−1)) +G(z(i+1))

)
≤ 1

2

(
∥x(i) − x⋆∥2P − ∥x(i+1) − x⋆∥2P

)
+

1

2β

(
∥z(i) − z⋆∥2Q − ∥z(i+1) − z⋆∥2Q

)
.

Summing up from i = 1 to k gives

k∑
i=1

τi
(
(1 + θi)F (x(i))− θiF (x(i−1)) +G(z(i+1))

)
≤ 1

2

(
∥x(1) − x⋆∥2P − ∥x(k+1) − x⋆∥2P

)
+

1

2β

(
∥z(1) − z⋆∥2Q − ∥z(k+1) − z⋆∥2Q

)
. (34)

The left-hand side can be written as

k∑
i=1

τi
(
(1 + θi)F (x(i))− θiF (x(i−1)) +G(z(i+1))

)
= τk(1 + θk)F (x(k)) +

k∑
i=2

(
(1 + θi−1)τi−1 − θiτi

)
F (x(i−1))− θ1τ1F (x(0)) +

k∑
i=1

τkG(z(i+1)).

By convexity of F it follows that

τk(1 + θk)F (x(k)) +

k∑
i=2

(
(1 + θi−1)τi−1 − θiτi

)
F (x(i−1))

≥ (τ1θ1 + ωk)F
(τ1(1 + θ1)x

(1) +
∑k

i=2 τix
(i+1)

τ1θ1 + ωk

)
= (τ1θ1 + ωk)F

(τ1θ1x(0) +∑k
i=1 τix

(i+1)

τ1θ1 + ωk

)
≥ ωkF (x(k)avg),

where ωk =
∑k

i=1 τi. Similarly,

k∑
i=1

τiG(z(i+1)) ≥ ωkG
(∑k

i=1 τiz
(i+1)

ωk

)
= ωkG(z(k)avg).

Hence, (34) becomes

L(x(k)avg, z)− L(x, z(k)avg) = F (x(k)avg) +G(z(k)avg)

≤ 1

ωk

(1
2
∥x(1) − x⋆∥2P +

1

2β
∥z(1) − z⋆∥2Q + τ1θ1F (x(0))

)
.

We have the same O(1/k) ergodic rate of convergence as in [10,12], though with the ergodic sequence

(x
(k)
avg, z

(k)
avg) defined in a different way.
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Figure 1: Plot of Scurve realizations generated by inexact PDHG, inexact PDHG without precondi-
tioning, exact PrePDHG ((21) with ϵk = 0), and SCS, respectively.

5 Numerical experiments

In this section, we evaluate the performance of inexact PDHG applied to NMDS (10) and MVU (16).
The numerical results verify that the presented algorithm can efficiently solve large-scale EDM
optimization problems that cannot be handled by general-purpose solvers (e.g., SeDuMi [52],
SDPT3 [54]). In addition, it is observed that inexact PDHG generates virtually better realizations
with inexact (low-rank) updates than without.

The experiments are carried out in MATLAB 2021b on a desktop with an Intel Core i5 2.4GHz
CPU and 16GB RAM. We compare inexact PDHG with the SCS solver [41], which is built on the
well-known alternating direction method of multipliers (ADMM) [8] and is able to solve large-scale
quadratic cone programs. For fair comparison, SCS is also used to solve the problems (10) and (16).

5.1 Numerical results for NMDS

To test the scalability of inexact PDHG, we test NMDS on five datasets: Scurve, Optdigits [2], Cifar-
10, MNIST, and EMNIST. Scurve is a small dataset suggested in [34], and is used here mainly for
visualization of the realizations. The last three datasets are commonly used in machine learning
applications. In our experiments we only take part of each dataset, and ensure that each label class
has the same number of data points. (Recall that the most expensive step in inexact PDHG is the
eigen-decomposition, and thus for inexact PDHG, the scale of solvable problems is limited by the size
of matrices for which an eigen-decomposition can be performed on a desktop.) The construction of
the data matrix B follows the instruction in [1]. For all the experiments, we set d = 2, the control
parameter for inexactness as η = 0.5, and the parameter in the preconditioner as γ = 1.

Table 1 reports the number of iterations and CPU time for and all variants of inexact PDHG and
SCS. Our method (inexact PDHG) outperforms SCS in terms of both the number of iterations and
runtime. It is also shown that preconditioning significantly reduces the number of iterations, and
thus the computation time. Moreover, the use of inexact updates does not affect the number of
iterations much. Recall that only a small portion of eigenvalues is needed in inexact updates, and
thus for larger datasets, inexact PDHG converges faster than its exact variant. We also note that
SCS fails for EMNIST dataset (n = 8000) while inexact PDHG is able to solve it efficiently. This
could be because SCS needs to generate a large number of auxiliary variables to represent the EDM
conic constraint, and thus the solver runs out of memory.

For the illustrative dataset Scurve, we also plot the constructed realizations from inexact PDHG,
PrePDHG and SCS in Fig. 1. We see that algorithms with inexact (low-rank) updates generate a
clearer and less noisy “S” curve when compared with algorithms with exact prox-evaluations.
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data n m algo precond. inexact
number of
iterations

CPU time
(in sec.)

Scurve 100 4, 949

inexact PDHG Y Y 1, 293 9.70
inexact PDHG Y N 1, 038 9.02
inexact PDHG N Y 21, 357 88.10

SCS - - 1, 627 15.25

Optdigits 1264 798, 215

inexact PDHG Y Y 1, 362 1.84× 102

inexact PDHG Y N 1, 265 1.62× 102

inexact PDHG N Y 26, 548 6.48× 104

SCS - - 1, 738 3.34× 103

Cifar-10 3000 4, 498, 499

inexact PDHG Y Y 1, 026 9.43× 103

inexact PDHG Y N 974 9.40× 103

inexact PDHG N Y 18, 625 2.82× 105

SCS - - 1, 328 1.64× 104

MNIST 5000 12, 497, 499

inexact PDHG Y Y 1, 563 5.45× 104

inexact PDHG Y N 1, 494 6.03× 104

inexact PDHG N Y 30, 054 1.62× 106

SCS - - 1, 998 9.28× 104

EMNIST 8000 31, 995, 999

inexact PDHG Y Y 1, 154 2.27× 105

inexact PDHG Y N 1, 026 3.64× 105

inexact PDHG N Y 20, 245 7.26× 106

SCS - - - OOM

Table 1: Results for NMDS. Four algorithms (three variants of inexact PDHG and SCS) are tested on
five datasets. n indicates matrix size and m indicates the number of linear constraints in NMDS.
The “precond.” and “inexact” columns indicate whether preconditioning and inexact updates are
used, respectively. OOM indicates out of memory.

5.2 Numerical results for MVU

MVU is tested on four datasets: Optdigits, Cifar-10, MNIST, and EMNIST. (Scurve is designed for
NMDS only.) Again we only take part of these datasets, and the construction of the data matrix B
follows the instruction in [57,58]. We set d = 2 and η = 0.5.

Table 2 reports the number of iterations and CPU time for two variants of inexact PDHG and
SCS. The observation is similar to the results for NMDS. Both algorithms take about one or two
thousand iterations, which is typical for first-order proximal methods. The computation time of
inexact PDHG is faster than that of SCS, because the inexact updates only need to compute four
leading eigenvalues and our customization handles the linear constraints efficiently.

6 Conclusions

We present a primal–dual proximal splitting algorithm (inexact PDHG) that allows for inexact prox-
evaluations, and apply it to Euclidean distance matrix (EDM) optimization problems. The inexact
prox-evaluation is motivated by the existence of a low-rank EDM solution, and backtracking line
search is used to compensate the inexactness errors and to guarantee convergence. We showcase two
machine learning models as application and reformulate them into EDM optimization problems.
Data structure is exploited to further improve the efficiency and scalability of inexact PDHG (for
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data n m algo inexact
number of
iterations

CPU time
(in sec.)

Optdigits 1264 78, 368
inexact PDHG Y 1, 028 1.53× 102

inexact PDHG N 943 1.38× 102

SCS - 1, 682 2.84× 103

Cifar-10 3000 447, 000
inexact PDHG Y 984 8.92× 103

inexact PDHG N 872 7.26× 103

SCS - 1, 403 1.23× 104

MNIST 5000 1, 245, 000
inexact PDHG Y 1, 438 4.98× 104

inexact PDHG N 1, 247 4.22× 104

SCS - 1, 813 7.43× 104

EMNIST 8000 3, 192, 000
inexact PDHG Y 1, 046 1.89× 105

inexact PDHG N 976 1.43× 105

SCS - 1, 572 3.71× 105

Table 2: Results for MVU. Three algorithms (two variants of inexact PDHG and SCS) are tested on
four datasets. n indicates matrix size and m indicates the number of linear constraints in MVU.
The “inexact” column indicates whether inexact updates are used.

EDM optimization), and numerical experiments are conducted to verify its superiority. Future
work might be needed to address the scalability of eigen-decomposition used in the algorithm.
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