
On Graphs with Finite-Time Consensus
and Their Use in Gradient Tracking

Edward Duc Hien Nguyen∗ Xin Jiang† Bicheng Ying‡ César A. Uribe∗

November 14, 2023

Abstract

This paper studies sequences of graphs satisfying the finite-time consensus property (i.e., iterating
through such a finite sequence is equivalent to performing global or exact averaging) and their use in
Gradient Tracking. We provide an explicit weight matrix representation of the studied sequences and
prove their finite-time consensus property. Moreover, we incorporate the studied finite-time consensus
topologies into Gradient Tracking and present a new algorithmic scheme called Gradient Tracking for
Finite-Time Consensus Topologies (GT-FT). We analyze the new scheme for nonconvex problems with
stochastic gradient estimates. Our analysis shows that the convergence rate of GT-FT does not depend
on the heterogeneity of the agents’ functions or the connectivity of any individual graph in the topology
sequence. Furthermore, owing to the sparsity of the graphs, GT-FT requires lower communication costs
than Gradient Tracking using the static counterpart of the topology sequence.

1 Introduction
We study the decentralized solution of optimization problems of the form

minimize
x∈Rd

f(x) ≜
1

n

n∑
i=1

fi(x), where fi(x) ≜ Eξi [Fi(x; ξi)], (1)

and fi : Rd → R is a smooth, possibly nonconvex function, and the symbol Eξi denotes the expected value of
the random variable or data ξi associated with the probability space {Ωi,Fi,Pi}. Hence, fi is defined as the
expected value of some loss function Fi(·, ξi) over ξi. Solving Problem (1) using traditional gradient descent
methods can incur high computational costs as the gradient oracle must be accessed at each iteration, and
the cost of gradient computation increases with the amount of data (Woodworth et al., 2018). Decentralized
stochastic gradient methods are an alternative approach in which each function fi and probability space
{Ωi,Fi,Pi} are assigned to be held exclusively and privately by an agent (node), and agents use stochas-
tic gradient estimates of fi. This parallelizes the cost of accessing the gradient oracle across the agents.
Consequently, agents must cooperate and communicate with one another according to a certain network
topology.

Previously, a considerable amount of work in decentralized optimization is tailored to applications such
as wireless communications, power systems, and sensor networks (Cui et al., 2007; Kar and Moura, 2009;
2010; Zhang et al., 2015). Network topologies for these applications are either static, unknown, or defined
beforehand. Moreover, communication might be fragile, and conservative worst-case scenarios must be
considered. We instead focus on the high-performance computing scenario in which agents are abstractions

∗Department of Electrical and Computer Engineering, Rice University. Email: en18@rice.edu, cauribe@rice.edu.
†Department of Industrial and Systems Engineering, Lehigh University. Email: xjiang@lehigh.edu.
‡Google Inc. Email: ybc@google.com.

1

of computing resources. Under this scenario, the communication links between agents are robust, and the
network topology can be flexibly and cheaply rearranged (Jouppi et al., 2023).

In view of the flexibility in the design of network structure, careful selection of sparse topologies can
reduce communication costs (Assran et al., 2019; Ding et al., 2023; Lan et al., 2018; Ying et al., 2021). A
simple choice of network structure for communication is to allow global coordination across all agents through
Parameter–Server (Li et al., 2014) or Ring–Allreduce (Patarasuk and Yuan, 2009). Yet, both strategies are
not scalable. Global coordination following the Parameter–Server framework incurs significant bandwidth
costs, while following the Ring–Allreduce protocol incurs high latency. An alternative approach to reduce
communication costs is to use a static, sparse topology such as rings or static exponential graphs. Under this
setup, communication costs are reduced as agents only communicate with their direct neighbors, and only
local information is needed. However, the benefits of reduced communication costs come at a price of slower
convergence when considering their implementation into decentralized algorithms (Nedić et al., 2018).

In this paper, we address the trade-off between communication costs and convergence rate in decentralized
optimization algorithms and propose to use sequences of deterministic topologies that satisfy the finite-time
consensus property. Topology sequences with the finite-time consensus property have the desirable feature
that iterating through the entire graph sequence is equivalent to performing global or exact averaging.
Moreover, each of the individual graphs in such a sequence is typically sparse (Shi et al., 2016; Takezawa
et al., 2023; Ying et al., 2021) and, when used in a decentralized algorithm, requires limited communication
costs at each iteration. We study several classes of topology sequences for which this seemingly restrictive
requirement holds, including the static de Bruijn graph (de Bruijn, 1946; Delvenne et al., 2009), one-peer
hyper-cubes (Shi et al., 2016), one-peer exponential graphs (Ying et al., 2021), and p-peer hyper-cuboids.

Despite the existence of various topology sequences with the finite-time consensus property, directly
incorporating them into decentralized algorithms is not straightforward. Classical analyses of decentralized
optimization algorithms assume, for example, symmetry and strong connectivity of the mixing matrices,
which certain elements in a topology sequence with the finite-time consensus property might violate. The
usefulness of finite-time consensus graphs in decentralized optimization was first examined in Ying et al.
(2021), where the Decentralized Momentum Stochastic Gradient (DmSGD) method is applied with one-
peer exponential graphs. The authors of Ying et al. (2021) show that the convergence rate of DmSGD
using one-peer exponential graphs is the same as that using static exponential graphs. This equivalence
is crucial as the communication cost of using a one-peer exponential graph is significantly lower than that
of using a static exponential graph. Despite the simplicity of Decentralized Stochastic Gradient methods,
their analysis requires making an assumption that bounds the heterogeneity between agents’ local functions
(see; e.g., Ying et al. (2021)). An alternative algorithm class called exact or bias-corrected methods has
been proposed to overcome this limitation so that convergence is achieved independent of the magnitude of
the heterogeneity. Examples of these algorithms include EXTRA (Shi et al., 2015), Exact Diffusion (Yuan
et al., 2019), and Gradient Tracking (GT) methods (Nedić et al., 2017). However, existing analysis for these
methods breaks when finite-time consensus graphs are used in the algorithms. For example, recent tight
analysis on GT methods (Alghunaim and Yuan, 2022; 2023; Koloskova et al., 2021) assumes static, strongly
connected topologies described by a symmetric mixing matrix, which limits the direct extension of their
analysis for the time-varying setting with possibly disconnected instantaneous communications.

Contributions. The contribution of this work is two-fold. First, we study several sequences of graphs that
satisfy the finite-time consensus property. For one-peer exponential graphs presented in Ying et al. (2021),
we present a simplified proof for its finite-time consensus property when the number of agents is a power
of 2. For an arbitrary number of agents, we present the sequence of graphs called p-peer hyper-cuboids, and
establish their finite-time consensus property. We also show that in certain cases, p-peer hyper-cuboids are
permutation equivalent to the well-studied de Bruijn graphs.

Moreover, we incorporate the studied topology sequences into the Gradient Tracking (GT) algorithm and
present a new algorithmic scheme called Gradient Tracking for Finite-Time Consensus Topologies (GT-FT).
We present convergence analysis for GT-FT, with further stepsize tuning and a simple warm-up technique.
The analysis establishes that the convergence rate is independent of the connectivity of any of the individual

2

graphs used in the algorithm. Furthermore, we show that GT-FT using one-peer exponential graphs has
slightly lower iteration complexity than GT using the static exponential graph. Considering the decentralized
manner of the algorithms, it suggests that GT-FT has significantly lower communication costs compared
with the static counterpart.

Outline. The rest of the paper is organized as follows. Section 2 discusses prior work on decentralized
optimization algorithms and existing sequences of topologies satisfying the finite-time consensus property.
Section 3 formally defines the finite-time consensus property and presents various topology sequences with
this property. Section 4 includes a description of the Time-Varying Gradient Tracking (TV-GT) algorithm
and our modified version: Gradient Tracking for Finite-Time Consensus Graphs (GT-FT). Section 5 presents
convergence analysis of GT-FT under the nonconvex setting where agents only have access to stochastic
gradient estimates. Numerical experiments in Section 6 verify the finite-time consensus property of the
topology sequences studied in Section 3 and the algorithm analysis in Section 5.

2 Related Work
We begin reviewing various decentralized optimization algorithms and describe the scope and settings for
their analysis. We highlight various works analyzing Gradient Tracking methods and detail why their analysis
cannot be trivially extended to sequences of topologies that satisfy the finite-time consensus property. We
then discuss prior work that studied sequences of topologies that satisfy the finite-time consensus property.

Many algorithms have been proposed to solve Problem (1) in a decentralized manner. We focus on
stochastic decentralized algorithms in which agents cannot compute the full gradient of their local objective
function. Among these algorithms, the most famous ones include Decentralized Stochastic Gradient (DSGD)
methods (Cattivelli and Sayed, 2010; Lopes and Sayed, 2007; Sundhar Ram et al., 2010), EXTRA (Shi
et al., 2015), Exact Diffusion/D2/NIDS (Li et al., 2019; Tang et al., 2018; Yuan et al., 2019), and Gradient
Tracking (Di Lorenzo and Scutari, 2016; Nedić et al., 2017; Qu and Li, 2018; Xu et al., 2015). (Accelerated
variants of decentralized algorithms are beyond the scope of this work and left for future work.) Below, we
briefly discuss current analytical findings on these algorithms that motivate our investigation into Gradient
Tracking methods.

DSGD is arguably the most popular and widely studied decentralized algorithm due to its simplicity and
communication efficiency. However, analysis of DSGD has revealed several of the algorithm’s limitations. For
example, DSGD requires a bounded heterogeneity assumption, which bounds the allowed difference between
local functions/data. One typical formulation of the heterogeneity assumption for nonconvex problems used
in recent analyses, such as the analysis done in Koloskova et al. (2020), reads as

1

n

n∑
i=1

∥∇fi(x)∥22 ≤ ζ̂2 + P∥∇f(x)∥2, for all x ∈ Rd,

where (P, ζ̂) ∈ R>0 × R>0 are two constants.
The effect of heterogeneity is further magnified by large and sparse topologies, which further degrades

the performance of DSGD. Both phenomena are captured in the work by Koloskova et al. (2020) where for
nonconvex problems in which agents use stochastic gradients, they can, as one special scenario, derive the
iteration complexity

O

(
Lσ̂2

nϵ
+
L(ζ̂

√
M + 1 + σ̂

√
p)

pϵ3/2
+
L
√

(P + 1)(M + 1)

pϵ

)
(2)

to find an ϵ-first-order stationary point. The constant p < 1 is one minus the spectral gap of a static, doubly
stochastic, and symmetric mixing matrix W ∈ Rn×n, which describes the network topology. The constants
σ̂2,M are derived from their assumption on the gradient noise:

1

n

n∑
i=1

Eξi∥∇Fi(xi, ξi)−∇fi(xi)∥22 ≤ σ̂2 +
M

n

n∑
i=1

∥∇fi(xi)∥22,

3

for all {xi}ni=1 ⊂ Rd. The constant L is the Lipschitz constant. The notation x(0) indicates the initial param-
eter of all agents, and f∗ is the optimal value of Problem (1). It follows from (2) that larger heterogeneity
or a smaller spectral gap will increase the number of iterations required to obtain the desired accuracy. The
iteration complexity of DSGD increases as the amount of heterogeneity ζ̂, P increases or as the connectivity
of the network decreases, i.e., p→ 0.

Exact or bias-corrected decentralized algorithms have been proposed to circumvent the negative effects
that heterogeneity has on the convergence of DSGD. Examples of these algorithms include EXTRA (Shi
et al., 2015), Exact Diffusion (Yuan et al., 2019), and Gradient Tracking methods (Nedić et al., 2017).
The aforementioned three algorithms have been studied in a unified framework in Alghunaim et al. (2021)
and Alghunaim and Yuan (2022). The analysis in Alghunaim et al. (2021) and Alghunaim and Yuan (2022)
on EXTRA, Exact Diffusion, and Gradient Tracking reveals that the bounded heterogeneity assumption is
not necessary. Furthermore, the convergence rate of these algorithms is dependent on the heterogeneity at
the initial point.

The convergence of EXTRA and Exact Diffusion has only been established for symmetric and static
mixing matrices (Alghunaim and Yuan, 2022). We specifically choose to focus on Gradient Tracking methods
because GT methods have been shown to converge for various scenarios such as directed graphs (Pu et al.,
2020; Xi et al., 2018) and time-varying graphs (Scutari and Sun, 2019). We note that the recent analyses on
Gradient Tracking methods (Alghunaim and Yuan, 2022; 2023; Koloskova et al., 2021) have comprehensively
covered the static, connected topology case. Their analyses cannot readily be extended to the time-varying
case as they all rely on assuming the symmetry of the mixing matrix. Even if one assumes that every mixing
matrix of a sequence of network topologies is symmetric, it does not necessarily hold that the product of
these matrices is also symmetric.

Gradient tracking with time-varying topologies (TV-GT) has been studied in other literature under
various assumptions. Nedić et al. (2017) analyze TV-GT, which they call DIGing, for the strongly-convex
deterministic scenario and with τ -connected graphs. The assumption of τ -connected graphs means that the
union of a sequence of τ -length graphs is connected, and is weaker than assuming that the topology at every
iteration is connected. Another example of TV-GT is the algorithm NEXT (Di Lorenzo and Scutari, 2016)
(and its extension SONATA (Scutari and Sun, 2019)), which are analyzed for the nonconvex multi-agent
composite optimization problems in the deterministic scenario and with τ -connected graphs. We note that
DIGing (Nedić et al., 2017), NEXT (Di Lorenzo and Scutari, 2016), and SONATA (Scutari and Sun, 2019) do
not cover the case in which agents can only have access to stochastic gradient estimates of their local objective
functions. Moreover, Song et al. (2022) provide convergence analysis for TV-GT under the nonconvex and
stochastic setting and make no assumption on the symmetry of the mixing matrices. Nevertheless, they only
consider the graph with the smallest connectivity (in expectation) of the set of all time-varying topologies
used in the algorithm. This does not cover deterministic sequences of topologies that satisfy the finite-time
consensus property where certain elements of the sequence are always disconnected.

Table 1: Summary of analyses for Time-Varying Gradient Tracking for the nonconvex, stochastic case.

Reference Nonconvex Stochastic Network Class Iteration Complexitya

Gradients

Song et al. (2022) ✓ ✓ Strongly Connected O
(

σ2

nϵ2

)
+O

(
σ

(1−λ)3/2ϵ3/2

)
+O

(
1

(1−λ)2ϵ

)b

Our Work ✓ ✓ Finite-Time Consensus O
(

Lσ2

nϵ2

)
+O

(
τ3/2Lσ
ϵ3/2

)
+O

(
τ2L
ϵ

)c

a These algorithms follow the Adapt-then-Combine update scheme so the computational and communication iteration
complexities are the same.

b The convergence rate in this paper omits the Lipschitz constant from their rate. The constant λ is the mixing rate of
the mixing matrix associated with the graph with the smallest connectivity (in expectation) of the set of all
time-varying topologies used in the algorithm. The constant σ is from the bounded variance assumption imposed on
the gradient noise.

c The constant τ is the length of the sequence of topologies with the finite-time consensus property, σ is from the bounded
variance assumption imposed on the gradient noise, and L is the Lipschitz constant.

4

Topologies with the so-called finite-time consensus property have been studied across various works but
have only recently revealed their usefulness for decentralized optimization. Delvenne et al. (2009) prove that a
sequence of static de Bruijn graphs can achieve finite-time convergence. Shi et al. (2016) study (symmetric and
asymmetric) gossip algorithms with finite-time convergence, and they provide hyper-cubes as an example of
finite-time consensus graphs. However, both papers do not study the use of finite-time consensus property in
decentralized optimization algorithms. Assran et al. (2019) first propose to decompose a static exponential
graph into a sequence of directed one-peer exponential graphs, and then the “Push-Sum” communication
protocol (proposed by Nedić et al. (2018)) is leveraged to enable the use of directed graphs in decentralized
algorithms. Yet, Assran et al. (2019) do not prove the finite-time consensus property for the proposed
graphs, and their analysis requires the bounded heterogeneity assumption. Further investigation into the
one-peer exponential graphs is conducted by Ying et al. (2021), where the authors prove that sequences
of one-peer exponential graphs with 2τ agents (τ ∈ N≥1) satisfy the finite-time consensus property. In
addition, Ying et al. (2021) incorporate the one-peer exponential graphs into the Decentralized Momentum
Stochastic Gradient (DmSGD) method. The authors show that the convergence rate of DmSGD using
one-peer exponential graphs is the same as DmSGD using static exponential graphs. The equivalence of
the convergence rate is significant because the communication cost of a one-peer exponential graph is much
lower than that of a static exponential graph. We note that the final convergence rate derived by Ying
et al. (2021) fails to consider the requirement on stepsizes imposed by their analysis, and thus, their result
is incomparable to ours. Recent work by Takezawa et al. (2023) proposes the k-peer hyper-hypercubes and
base-(k+ 1) graphs and claims that both satisfy the finite-time consensus property for an arbitrary number
of nodes. However, Takezawa et al. (2023) only present a constructive approach to building the graphs
and do not give an explicit matrix representation of the corresponding weight/mixing matrices. Although
numerical evidence provided in Takezawa et al. (2023) demonstrates the finite-time consensus property of
their proposed base-(k+1) graphs, theoretical justification is still lacking and requires further investigation.
Last but not least, we remark that the scenarios studied in Assran et al. (2019); Takezawa et al. (2023); Ying
et al. (2021) all require the bounded heterogeneity assumption due to their choice to study DSGD methods.

3 Finite-Time Consensus
In this section, we formally define the finite-time consensus property, and establish this property for several
sequences of graphs, including the one-peer exponential graphs and the p-peer hyper-cuboids.

Notation. Only in this section, we modify the convention for indexing a matrix W ∈ Rn×n. In this section,
we start the indexing at 0, i.e., the entries of an n× n matrix W are

W = [wij] for i, j = 0, 1, . . . , n− 1.

In the rest of the paper, we follow the convention and start the indexing at 1, i.e.,

W = [wij] for i, j = 1, 2, . . . , n.

3.1 Definition of Finite-Time Consensus Property
We formally present the conditions for a sequence of graphs (or topologies) to have the finite-time consensus
(or exact averaging) property.

Definition 3.1 (Graph sequence with Finite-Time Consensus). The sequence of graphs G(l) = (V,W (l), E(l)),
l = 0, . . . , τ − 1, has the finite-time consensus property with parameter τ ∈ N≥1 if and only if the weight
matrices {W (l)}τ−1

l=0 are doubly stochastic and satisfy

W (τ−1)W (τ−2) · · ·W (1)W (0) =
1

n
11

T. (3)

5

Table 2: Classes of graph sequences that satisfy Definition 3.1.

Topology Orientation Size n Maximum Degree # of Iterations (τ)
for Finite-Time Consensus

One-Peer Exponential (Ying et al., 2021) Directed Power of 2 a 1 log2(n)

One-Peer Hyper-Cube (Shi et al., 2016) Undirected Power of 2 1 log2(n)

p-Peer Hyper-Cuboid Undirected Any n ∈ N p b # of Prime Factors c

de Bruijn (Delvenne et al., 2009) Directed Power of p ∈ N≥2 p− 1 logp(n)

a When n ̸= 2τ , one-peer exponential graphs are still well-defined, but the finite-time consensus property no longer holds.
b Consider n = 20 and its prime factors {2, 2, 5}. The largest prime factor is 5. The maximum degree is then p = 4.
c We consider the multiplicity of the prime factors as well. Consider n = 20 and its prime factors {2, 2, 5}. In this case, the

number of prime factors is τ = 3.

For a sequence of doubly stochastic matrices {W (l)}τ−1
l=0 , the condition (3) is equivalent to(

W (τ−1) − 1
n11

T
)(
W (τ−2) − 1

n11
T
)
· · ·
(
W (1) − 1

n11
T)
(
W (0) − 1

n11
T
)
= 0. (4)

The parameter τ in Definition 3.1 is not arbitrary and might depend on the matrix size n and graph structure.
Examples of graphs with finite-time consensus are provided in Sections 3.2–3.4, and the parameter τ will be
clear from the context. In Definition 3.1, each matrix W (l) in the sequence is required to be doubly stochastic
but needs not be symmetric or connected. The potential disconnectivity might be a desirable property in the
context of decentralized optimization, because such graphs tend to be sparser and using them in decentralized
algorithms helps reduce the communication overhead at each iteration. Nevertheless, when considered jointly,
a sequence of graphs satisfying Definition 3.1 exhibits the same connectivity properties as the fully connected
graph.

Graph sequences with finite-time consensus have been proposed and analyzed in various contexts. For
example, Delvenne et al. (2009) establish the finite-time property for a sequence of static de Bruijn graphs.
(In Delvenne et al. (2009), the term “deadbeat” consensus is used instead of finite-time consensus.) Later,
Shi et al. (2016) justify the finite-time consensus property for a sequence of one-peer hyper-cubes (when
n = 2τ for some τ ∈ N≥1). (As the name suggests, the hyper-cuboids discussed in Section 3.4 reduce to
hyper-cubes when the matrix size n is a power of 2.) Assran et al. (2019) observe in numerical experiments
that one-peer exponential graphs have the finite-time consensus property when n is a power of 2, which is
later theoretically justified in Ying et al. (2021). More recently, Takezawa et al. (2023) claim to build graph
sequences of any node size n ∈ N that satisfy (3), but they do not provide any theoretical justification.
In another line of research, Ding et al. (2023) extend the optimal message passing algorithm developed in
Bar-Noy et al. (1993) and propose a communication-optimal exact consensus algorithm. The algorithm
proposed in Ding et al. (2023) requires an additional copy of the optimization variable at each agent, and
with the help of these auxiliary variables, achieves “finite-time consensus” for an arbitrary number of agents.
The discussion of this approach is out of the scope of this paper, and further investigation is left as future
work. Table 2 presents several of the existing graph sequences for which Definition 3.1 is proven to hold. In
the remainder of this section, we detail the one-peer exponential graphs and the p-peer hyper-cuboids. For
the well-studied de Bruijn graphs, we establish its connection to the p-peer hyper-cuboids and postpone the
details to Appendix A.

3.2 One-Peer Exponential Graphs
We present the weight matrices of one-peer exponential graphs (Ying et al., 2021), listing several properties
we will leverage throughout this paper. In particular, the weight matrices representing one-peer exponential
graphs are asymmetric, doubly stochastic, sparse (potentially disconnected), and when n is a power of 2,
satisfy (3).

As a byproduct, we develop an alternative proof for the finite-time consensus property of one-peer expo-
nential graphs (when n = 2τ). In comparison, Ying et al. (2021) provided the first theoretical justification,

6

0

1

2

3

4

5

6

7

(a) G(0).

0

1

2

3

4

5

6

7

(b) G(1).

0

1

2

3

4

5

6

7

(c) G(2).

Figure 1: The three one-peer exponential graphs {G(l)}2l=0 with n = 8 and τ = log2(8) = 3. Note that all
nodes have self-loops, although not explicitly shown in the figure.

which we believe was inspired by the use of binary numbers in the proof for hyper-cubes (Shi et al., 2016).
For a given matrix size n ∈ N≥2, let τ = ⌈log2(n)⌉. Then, the weight matrices representing the one-peer

exponential graphs {G(l)}l∈N are defined as

w
(l)
ij =

1
2 if mod(j − i, n) = 2mod(l,τ)

1
2 if i = j

0 otherwise,
(5)

and Figure 1 shows the three one-peer exponential graphs when n = 8 and τ = 3. By definition, given
n ∈ N≥2, there exists a number of τ = ⌈log2(n)⌉ distinct one-peer exponential graphs. All of them are
asymmetric, doubly stochastic, circulant, and some of them are not strongly connected. When one-peer
exponential graphs are used as network topology in decentralized algorithms, each agent only communicates
with one neighbor at each iteration. Thus, the total communication cost per iteration is Θ(1). Finally, the
crucial property that makes one-peer exponential graphs useful in decentralized optimization is presented as
follows.

Proposition 3.1. Given n ∈ N≥2, let τ = ⌈log2(n)⌉, and let {W (l)}l∈N ⊂ Rn×n be the weight matrices de-
fined in (5). Each matrix W (l) is circulant and doubly stochastic, i.e., W (l)

1 = 1 and 1TW (l) = 1
T. In addi-

tion, if n is a power of 2 (i.e., n = 2τ) and the index sequence {li}τ−1
i=0 satisfies {mod(l0, τ), . . . ,mod(lτ−1, τ)} =

{0, . . . , τ − 1}, then the matrices {W (li)}τ−1
i=0 satisfy the finite-time consensus property in Definition 3.1.

From Proposition 3.1, given a sequence of one-peer exponential graphs with n = 2τ , any permutation
of this sequence will still satisfy the finite-time consensus property (3). The properties in Definition 3.1 are
the minimum requirements needed for algorithm analysis in Section 5. Additional properties, such as the
circulant property stated in Proposition 3.1, are desirable but unnecessary in algorithm design.

Our proof of Proposition 3.1 relies on some basic properties of circulant matrices, which are summarized
in the following lemma and can be found in, e.g., in Horn and Johnson (2013, Section 4.7.7).

Lemma 3.2. The n× n circulant matrix associated with an n-vector c = (c0, c1, . . . , cn−1) is defined by

C = Circ(c0, c1, . . . , cn−1) ≜

c0 cn−1 · · · c2 c1
c1 c0 cn−1 c2
... c1 c0

.

cn−2
. cn−1

cn−1 cn−2
. . . c1 c0

. (6)

The eigenvalue decomposition of C (6) is given by

C =
(

1√
n
F
)
·
(
diag(Fc)

)
·
(

1√
n
F†),

7

where F is the n × n DFT matrix, † denotes the Hermitian (conjugate transpose), and the diag operator
transforms an n-vector into an n× n diagonal matrix. Moreover, the eigenvalues of C (6) are given by

λk = c0 + c1ω
k + c2ω

2k + · · ·+ cn−1ω
(n−1)k, k = 0, 1, . . . , n− 1,

where ω = exp
(
2πȷ̂
n

)
is a primitive n-th root of unity and ȷ̂ is the imaginary number (i.e., ȷ̂2 = −1).

Now we present the proof for Proposition 3.1.

Proof of Proposition 3.1. Note that the mixing matrices of one-peer exponential graphs defined in (5) are
circulant. Thus, if we consider the sequence {W (l)}τ−1

l=0 , we can find

W (τ−1) · · ·W 1W 0 =
(

1√
n
F
)
·
(
Λ(τ−1) · · ·Λ(1)Λ(0)

)
·
(

1√
n
F†),

where Λ(l) = diag(Fc(l)) and c(l) is the first column of W (l), for l = 0, 1, . . . , τ − 1. For simplicity, we denote
Λ ≜ Λ(τ−1) · · ·Λ(1)Λ(0).

For each l = 0, 1, . . . , τ − 1, the first element in Fc(l) is 1 because the first row of F is an all-one vector.
This implies that the first element in Λ is also 1. Similarly, the k-th diagonal element in Λ (Λ[k]) can be
found by expanding the definition Λ(l) = diag(Fc(l)):

1

2τ

[
(Λ(τ−1)[k]) · · · (Λ(2)[k])(Λ(1)[k])(Λ(0)[k])

]
=

1

2τ

[
(1 + ω(n−2τ−1)(k)) · · · (1 + ω(n−4)(k))(1 + ω(n−2)(k))(1 + ω(n−1)(k))

]
=

1

2τ

[
(1 + ω(−2τ−1)(k)) · · · (1 + ω(−4)(k))(1 + ω(−2)(k))(1 + ω(−1)(k))

]
=

1

2τ

n−1∑
q=0

ω−kq =
1

2τ

(
1− ω−kn

1− ω−k

)
= 0,

where in the first equation we use the assumption that n = 2τ for some τ ∈ N≥1. Hence, we have

W (τ−1) · · ·W (1)W (0) =
(

1√
n
F
)
Λ(τ−1) · · ·Λ(1)Λ(0)

(
1√
n
F†)

=
(

1√
n
F
)(
diag(1, 0, 0, . . . , 0)

)(
1√
n
F†)

= 1
n11

T,

which establishes the desirable identity (3). To show (4), we consider the product of the following two terms(
W (l+1) − 1

n11
T
)(
W (l) − 1

n11
T
)
=W (l+1)W (l) − 1

n11
T, for any l = 0, . . . , τ − 2.

This equality holds due to the doubly stochastic property of W (l). We can then repeat this process to obtain(
W (τ−1) − 1

n11
T
)
· · ·
(
W (1) − 1

n11
T
)(
W (0) − 1

n11
T
)
=W (τ−1) · · ·W (1)W (0) − 1

n11
T = 0,

where in the last step we use (3). Combining this result with the fact that one-peer exponential graphs are
periodic, and all instances of one-peer exponential graphs are commutative, we obtain that any permutation
of any sequence of W (l) of length larger than τ has the finite-time consensus property as well.

Despite the desirable finite-time consensus property, incorporating one-peer exponential graphs into de-
centralized optimization algorithms is not straightforward. To see this, consider a simple example where
n = 8 (and τ = log2(8) = 3). Figure 1 shows the three one-peer exponential graphs with n = 8. None of
these three graphs has symmetric weight matrices; the last two are not connected. As a result, the weight
matrices of the last two graphs in Figure 1 have ρ ≜ ∥W− 1

n11
T∥2 = 1 while current analyses of decentralized

algorithms often assume ρ < 1. Therefore, new analysis techniques are needed to exploit the properties of
one-peer exponential graphs in decentralized algorithms (especially exact or bias-corrected methods), and a
similar discussion also holds for the graph sequences studied in Sections 3.3–3.4.

8

3.3 One-Peer Hyper-Cube
Another example of graph sequences that satisfy Definition 3.1 is one-peer hyper-cubes (Shi et al., 2016)
(with n a power of 2). Hyper-cubes have been extensively studied in theoretical computer science (see,
e.g., Harary et al. (1988) for a survey). Still, the specialization to one-peer hyper-cubes with finite-time
consensus was first, to the best of our knowledge, discussed in Shi et al. (2016). The formal definition of
one-peer hyper-cubes is presented here to keep our work self-contained and, more importantly, to motivate
the extension to p-peer hyper-cuboids for any n ∈ N≥2 in Section 3.4.

Given an integer τ ∈ N≥1 and n ≜ 2τ , the weight matrices {W (l)}l∈N ⊂ Rn×n representing the one-peer
hyper-cube {G(l)}l∈N are defined by

w
(l)
ij =

1
2 if (i ∧ j) = 2mod(l,τ),
1
2 if i = j,

0 otherwise,
(7)

where the notation i ∧ j represents the bit-wise XOR operation between integers i and j. The difference in
the definition of one-peer hyper-cubes (7) and that of one-peer exponential graphs (5) is minor yet critical:
The operation (i ∧ j) is used in (7) while mod(j − i, n) in (5). Since (i ∧ j) = (j ∧ i), it immediately follows
that the mixing matrices of one-peer hyper-cubes are symmetric. To see the connection between one-peer
hyper-cubes (7) and the static hyper-cubes, we represent the integer i in its binary form (iτ−1iτ−2 · · · i0)2.
Then, the first if-condition in (7) can be rewritten as

(iτ−1iτ−2 · · · i0)2 ∧ (jτ−1jτ−2 · · · j0)2 = (0 · · · 0 1 0 · · · 0︸ ︷︷ ︸
mod(l,τ)

)2;

that is, only the (mod(l, τ) + 1)-th digit in i’s and j’s binary representation is different, and the rest of the
digits are the same. To construct one-peer hyper-cubes, we first index the vertices as τ -digit binary numbers,
and then an edge is created between two distinct vertices if their binary representations differ by a single
digit. Finally, the finite-time consensus property proof for one-peer hyper-cubes is postponed to Section 3.4,
since one-peer hyper-cubes will be covered as a special case of the p-peer hyper-cuboids.

3.4 p-Peer Hyper-Cuboids
Both one-peer hyper-cubes and one-peer exponential graphs enjoy the finite-time consensus property when
the number of agents is a power of 2. One natural extension of hyper-cubes to admit an arbitrary number
of agents is the hyper-cuboid, which has many different names (e.g., hyper-box, orthotope) and has been
well studied in, e.g., Coxeter (1973). So, borrowing the idea behind the one-peer hyper-cubes, we present
a family of sparse graphs that achieves finite-time consensus for any integer n ∈ N≥2. Recently, Takezawa
et al. (2023) present a constructive approach to build the so-called k-peer hyper-hypercubes. Yet, the authors
do not present an explicit matrix representation for the proposed graphs, nor do they prove the finite-time
consensus property.

Recall that one-peer hyper-cubes (7) are defined via the binary representation of integers. Then, the
extension to arbitrary matrix size n relies on a multi-base representation of integers (Krenn et al., 2015). To
be specific, the (pτ−1, pτ−2, . . . , p0)-based representation of an integer is an element in the group Npτ−1

×
Npτ−2

× · · · × Np0
, where Npk

is the group of nonnegative integers modulo pk ∈ N≥2. Any natural integer
smaller than pτ−1 × pτ−2 × · · · × p0 finds a one-to-one mapping in this group. For example, a (2, 2, . . . , 2)-
based representation is equivalent to the binary representation of an integer. An informative example is the
(2, 3)-based representation. In this case, we can map the integer in {0, 1, . . . , 5} according to the following
rule:

0 → {0}2 × {0}3, 1 → {0}2 × {1}3, 2 → {0}2 × {2}3,
3 → {1}2 × {0}3, 4 → {1}2 × {1}3, 5 → {1}2 × {2}3.

9

9 10

76

3 4

10

11

8

5

2

(a) G(0).

9 10

76

3 4

10

11

8

5

2

(b) G(1).

9 10

76

3 4

10

11

8

5

2

(c) G(2).

Figure 2: The three 2-peer hyper-cuboids {G(l)}2l=0 with n = 12, (p2, p1, p0) = (2, 2, 3), and τ = 3. Note that
all nodes have self-loops, although not explicitly shown in the figure.

To shorten the notation, we overload binary representation and denote the (pτ−1, pτ−2, . . . , p0)-based repre-
sentation of i ∈ N as (ipτ−1 · · · ip1ip0)pτ−1,...,p1,p0 , so that we can also re-write {a}p1 × {b}p0 as (a, b)p1,p0 .

Now, we are ready to construct p-peer hyper-cuboids with n agents. Suppose the prime factorization
of n is given by n = pτ−1 · · · p1p0, where all the pj are prime numbers. (It is possible that pi = pj for i ̸= j,
and the order of {pj} does not matter.) For example, the prime factor set of n = 12 is (p2, p1, p0) = (2, 2, 3).
Then, the weight matrices of p-peer hyper-cuboids, with p = max{p0, . . . , pτ−1} − 1, are defined by

w
(l)
ij =

1

pmod(l,τ)
if (i ∧pτ−1,...,p1,p0

j) = (0, · · · , 0, 1, 0, · · · , 0︸ ︷︷ ︸
mod(l,τ)

)pτ−1,...,p1,p0

1
pmod(l,τ)

if i = j,

0 otherwise.

(8)

where i ∧pτ−1,...,p1,p0
j denotes the bit-wise XOR operation between the (pτ−1, . . . , p1, p0)-based representa-

tions of i and j; that is, if the pk ∈ Npk
element of i’s multi-base representations is the same as that of j,

then return {0}pk
, and otherwise return {1}pk

. Figure 2 shows all three distinct 2-peer hyper-cuboids with
12 agents. In this example, n = 12, (p2, p1, p0) = (2, 2, 3), and τ = 3. To illustrate the definition (7), take
the edge (i, j) = (8, 11) in G(1) as an example; see Figure 2b. The two integers i = 8 and j = 11 are mapped
in the (2, 2, 3)-based representation as

8 → {1}2 × {0}2 × {2}3, 11 → {1}2 × {1}2 × {2}3.

These two representations differ only at the second sub-group Np1
= N2, and thus when l = 1, agents i = 8

and j = 11 are connected with weight w(l)
ij = w

(1)
8,11 = 1

p1
= 1

2 .
The definition of p-peer hyper-cuboids (8) is clear as an extension from binary numbers to multi-base

integer representations. Yet, the original definition (8) is less intuitive when we try to establish the properties
of p-peer hyper-cuboids. It turns out that the weight matrix W (l) of p-peer hyper-cuboids defined in (7) also
has an elegant representation in terms of Kronecker products:

W (l) =W (l)(pτ−1)⊗ . . .⊗W (l)(p1)⊗W (l)(p0), (9)

where each pr × pr matrix W (l)(pr) is defined by

W (l)(pr) =

{
Ipr

if mod(l, τ) ̸= r
1
pr
11

T if mod(l, τ) = r.
(10)

The equivalence between (8) and (9) can be established as follows.

W (l) =

n−1∑
i=0

n−1∑
j=0

w
(l)
ij eie

T
j

10

=
∑
ipτ−1

· · ·
∑
ip0

∑
jpτ−1

· · ·
∑
jp0

w
(l)
(ipτ−1

···ip1 ip0),(jpτ−1
···jp1 jp0)

(êipτ−1
⊗ · · · ⊗ êip0)(êjpτ−1

⊗ · · · ⊗ êjp0)
T

=
∑
ipτ−1

· · ·
∑
ip0

∑
jpr : r=mod(l,τ)

1

pr
(êipτ−1

êTipτ−1
)⊗ · · · ⊗ (êipr ê

T
jpr

)⊗ · · · ⊗ (êip0 ê
T
ip0

) (11a)

=
(∑

ipτ−1

êipτ−1
êTipτ−1

)
⊗ · · · ⊗

(∑
ipr

∑
jpr

1

pr
êipr ê

T
jpr

)
⊗ · · · ⊗

(∑
ip0

êip0 ê
T
ip0

)
(11b)

=W (l)(pτ−1)⊗ · · · ⊗W (l)(p1)⊗W (l)(p0). (11c)

Here, the notation ei is a base unit vector of length n, i.e., all entries are 0 except that the i-th entry is 1.
(Recall that the index starts with 0.) The notation êipr is a base unit vector of length pr, where all entries
are 0 except for the (ipr)-th entry, and recall pr is a prime factor of n. Step (11a) removes the terms that
are 0 using definition (8), and then we apply the transpose and mixed-product properties of the Kronecker
product. Step (11b) distributes each summation into the corresponding Kronecker product, and (11c) uses
the definition of W (l)(pr) in (10).

Now, we are ready to establish the finite-time consensus property of p-peer hyper-cuboids.

Proposition 3.3. Given n ∈ N≥2, let {W (l)}l∈N ⊂ Rn×n be the weight matrices defined in (8). Each matrix
W (l) is symmetric and doubly stochastic. For an index sequence {li}τ−1

i=0 with {mod(l0, τ), . . . ,mod(lτ−1, τ)} =
{0, . . . , τ − 1}, the matrices {W (li)}τ−1

i=0 satisfy the finite-time consensus property in Definition 3.1.

Proof. First, the symmetry of W (l) follows directly from its definition. To see the row stochastic property,
we have

W (l)
1 =

(
W (l)(pτ−1)⊗W (l)(pτ−2)⊗ · · · ⊗W (l)(p0)

)
(1pτ−1

⊗ · · · ⊗ 1p0
)

=
(
W (l)(pτ−1)1pτ−1

)
⊗ · · · ⊗

(
W (l)(p0)1p0

)
= 1,

where we use the mixed-product property of the Kronecker product. The column stochastic property follows
from symmetry and row stochasticity. Hence, W (l) is doubly stochastic. Next, we show that the sequence
{W (l)}τ−1

l=0 has the finite-time consensus property. Utilizing the Kronecker product property, we establish
that

τ−1∏
l=0

W (l) =

τ−1∏
l=0

(
W (l)(pτ−1)⊗W (l)(pτ−2)⊗ · · · ⊗W (l)(p0)

)
=
(τ−1∏

l=0

W (l)(pτ−1)
)
⊗
(τ−1∏

l=0

W (l)(pτ−2)
)
⊗ · · · ⊗

(τ−1∏
l=0

W (l)(p0)
)

=
(

1
pτ−1

1pτ−11
T
pτ−1

)
⊗ · · · ⊗

(
1
p0
1p01

T
p0

)
= 1

n11
T,

where we again use the mixed-product property. Combining this result with the fact that p-peer hyper-
cuboids are periodic, and all instances of p-peer hyper-cuboids are commutative, we obtain that any permu-
tation of any sequence of W (l) of length larger than τ has the finite-time consensus property as well.

Proposition 3.4. For any n = 2τ with τ ∈ N≥1, the weight matrices of one-peer hyper-cubes defined in (7)
are symmetric, double-stochastic, and have the finite-time consensus property (3).

Proof. When the number of agents is n = 2τ , the one-peer hyper-cube is just a special case of p-peer hyper-
cuboids (with p = 1). Decomposition of n into its (2, 2, . . . , 2)-base representation (or equivalently, binary
representation) yields the desired properties.

11

Connection with de Bruijn graphs. The de Bruijn graph was first studied in de Bruijn (1946) and its
finite-time consensus property has been studied in Delvenne et al. (2009). Here, we present a formulation of
de Bruijn graphs closely related to p-peer hyper-cuboids (8). With this definition of de Bruijn graphs, we
show that de Bruijn graphs are just permutations of p-peer hyper-cuboids.

Let n = pτ with (p, τ) ∈ N≥2 × N≥1, and define the p-based representation of i ∈ {0, 1, . . . , n − 1} as
(iτ−1iτ−2 . . . i0)p. Then, the n× n weight matrix of the de Bruijn graph is defined by

wij =

{
1
p if (iτ−2iτ−3 . . . i0)p = (jτ−1jτ−2 . . . j1)p

0 otherwise.
(12)

The following proposition presents the connection between de Bruijn graphs and p-peer hyper-cuboids when
the matrix size n is a power of p ∈ N≥2.

Proposition 3.5. Given n = pτ with (p, τ) ∈ N≥2 × N≥1, let Wdb ∈ Rn×n be the weight matrix of the
de Bruijn matrix defined in (12) and {W (l)

hc }l∈N be the weight matrices of the p-peer hyper-cuboids defined
in (8). Then for any l ∈ N, there exist n× n permutation matrices P (l) and Q(l) such that

W
(l)
hc = P (l)Wdb(Q

(l))T.

Proof. See Appendix A.

4 Algorithm Description
This section presents Gradient Tracking with time-varying topologies (TV-GT) and our modified version,
Gradient Tracking with Finite-Time Consensus Topologies (GT-FT). Henceforth, we will refer to each algo-
rithm as TV-GT and GT-FT, respectively.

4.1 Gradient Tracking with Time-Varying Topologies
Gradient Tracking (GT) (Di Lorenzo and Scutari, 2016; Nedić et al., 2017) is a well-studied decentralized
algorithm for solving Problem (1), and various formulations of TV-GT exist in the literature. The presented
form follows from Di Lorenzo and Scutari (2016) (called Semi-ATC-TV-GT), and its implementation involves
a sequence of graphs G(k) = (V,W (k), E(k)) which models the connections between the group of n agents.
Here, V is the set of n nodes and E(k) ⊆ {(i, j) | (i, j) ∈ V × V} describes the set of connections between
agents. The set of agents V remains static while the set of edges E(k) can be time-varying. The entry w(k)

ij

in the matrix W (k) applies a weighting factor to the parameters sent from agent i to agent j. If w(k)
ij = 0,

that means agent i is not a neighbor of agent j in G(k); i.e., (i, j) /∈ E(k).
Given an initial point {x(0)i } ⊂ Rd and stepsizes α ∈ R>0, set g(0)i = ∇Fi(x

(0)
i , ξ

(0)
i) for i = 1, . . . , n.

Then, TV-GT takes the following iterations for k = 0, 1, 2, . . .

Parameter: x
(k+1)
i =

∑
j : (j,i)∈E(k)

w
(k)
ji (x

(k)
j − αg

(k)
j)

Tracking Variable: g
(k+1)
i =

∑
j : (j,i)∈E(k)

w
(k)
ji g

(k)
j +∇Fi(x

(k+1)
i ; ξ

(k+1)
i)−∇Fi(x

(k)
i ; ξ

(k)
i).

(13)

Very often, the TV-GT iterations are written in a more compact form, which relies on the following augmented
quantities

x(k) ≜ col{x(k)1 , . . . , x(k)n } ∈ Rdn,

g(k) ≜ col{g(k)1 , . . . , g(k)n } ∈ Rdn,

12

f(x) ≜
1

n

n∑
i=1

fi(xi),

∇f(x) ≜ col{∇f1(x1), . . . ,∇fn(xn)} ∈ Rdn,

∇F(x; ξ) ≜ col{∇F1(x1; ξ1), . . . ,∇Fn(xn; ξn)} ∈ Rdn,

W(k) ≜W (k) ⊗ Id ∈ Rdn×dn.

With the augmented quantities, TV-GT (13) can be written compactly in the network form:

x(k+1) = W(k)(x(k) − αg(k))

g(k+1) = W(k)g(k) +∇F(x(k+1); ξ(k+1))−∇F(x(k); ξ(k)).

The choice of the matrix sequence {W (k)} is critical yet challenging. One focus of this work is to analyze TV-
GT in which the network topologies are restricted to topology sequences that satisfy Definition 3.1, and in
particular, we focus on the nonconvex, stochastic setting. We have detailed the finite-time consensus property
in Section 3 and motivated its usefulness in decentralized optimization algorithms. However, the existing
analysis for TV-GT cannot handle the graphs described in Section 3. For example, work by Alghunaim
and Yuan (2022; 2023); Koloskova et al. (2021) provide tight bounds for the convergence rate of Gradient
Tracking with static topology (W (k) = W for all k ∈ N). Yet, their work cannot be readily extended to
handle time-varying topologies as they all assume the symmetry of the mixing matrix. Even if every mixing
matrix in the topology sequence is symmetric, the product of these matrices does not necessarily remain
symmetric. Moreover, prior work focusing exclusively on TV-GT either fails to consider the setting in which
agents use stochastic gradients or assumes the connectivity of the topology at every iteration. See Table 1
and Section 2 for an in-depth discussion.

4.2 Gradient Tracking with Finite-Time Consensus Topologies
Algorithm 1 (GT-FT) presents our modified version of the TV-GT algorithm with sequences of topologies
that satisfy Definition 3.1. In step (15b), the x(k+1) update involves a gradient descent step with the tracking
variable g(k) as the update direction, and also a communication step with its neighbors to obtain a weighted
average. In step (15c), the tracking variable update involves a weighted averaging step, subtracting the old
local gradient, and adding the newly calculated local gradient. The update rules in GT-FT are known in
GT literature. However, we are the first, to our knowledge, to propose and analyze this new scheme in
which TV-GT is restricted to topology sequences that satisfy Definition 3.1. TV-GT, as presented in other
works (e.g., Nedić et al. (2017); Scutari and Sun (2019)), aims to be as general as possible when considering
network topologies. In contrast, motivated by the useful finite-time consensus property (Definition 3.1) and
the existence of such sparse graphs (see Section 3.2–3.4), we aim to specialize the analysis of GT to topology
sequences that satisfy Definition 3.1, and to leverage the largely unexploited finite-time consensus property
in decentralized optimization algorithms. To differentiate between the two approaches, we give our scheme
the name GT-FT.

The analysis of GT-FT is presented in Section 5, and extensively uses the compact, networked form of
Algorithm 1 (with the help of the augmented quantities):

W(k) =W (mod(k,τ)) ⊗ Id (15a)

x(k+1) = W(k)(x(k) − αg(k)) (15b)

g(k+1) = W(k)g(k) +∇F(x(k+1); ξ(k+1))−∇F(x(k); ξ(k)). (15c)

5 Algorithm Analysis
This section presents the theoretical analysis of Algorithm 1. The assumptions needed for the analysis are
listed in Section 5.1. In particular, we do not assume convexity, and we only have access to stochastic

13

Algorithm 1 Gradient Tracking for Finite-Time Consensus Topologies (GT-FT)

1: Agent i Input: x(0)i ∈ Rd and stepsizes α ∈ R>0.
2: Global Input: The parameter τ ∈ N≥1 for finite-time consensus, and the sequence of matrices {W (l)}

that satisfies Definition 3.1.
3: Initialize g(0)i = ∇Fi(x

(0)
i , ξ

(0)
i) ∈ Rd.

4: for k = 0, 1, . . . do
5: for i = 1, . . . n (in parallel) do
6: Deciding the combination coefficients:

w
(k)
ij =W (mod(k,τ))[i, j], for all j = 1, . . . , n. (14a)

7: Parameter update:

x
(k+1)
i =

∑
j : (j,i)∈E(k)

w
(k)
ji (x

(k)
j − αg

(k)
j). (14b)

8: Tracking variable update:

g
(k+1)
i =

∑
j : (j,i)∈E(k)

w
(k)
ji g

(k)
j +∇Fi(x

(k+1)
i ; ξ

(k+1)
i)−∇Fi(x

(k)
i ; ξ

(k)
i). (14c)

9: end for
10: end for

gradient estimates of each local function fi. In addition, we present in Section 5.1 a reformulation of the
updates (14b)–(14c), which will be used extensively in the analysis. The convergence results are presented
in Section 5.2, with detailed proofs postponed to Appendix B.

5.1 Assumptions and Transformation of Algorithm 1
In this subsection, we list all the assumptions needed for analysis. Our analysis does not need convexity of
the objective function and holds for general nonconvex problems in the form of (1). In addition, we present
the key transformation of Algorithm 1 presented by (Song et al., 2022) which is critical to our analysis.

We make the following assumption on Problem (1).

Assumption 5.1. Each function fi : Rd → R, i = 1, . . . , n is continuously differentiable with an L-Lipschitz
continuous gradient; i.e., there exists a constant L ∈ R>0 such that

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, for all x, y ∈ int dom fi, and for all i = 1, . . . , n.

In addition, the objective function f : Rd → R is bounded below, and the optimal value of Problem (1) is
denoted by f∗ ∈ R.

At each iteration of Algorithm 1, a stochastic gradient estimator of each component function fi is com-
puted, based on the random variable ξ

(k)
i in the probability space (Ωi,Fi,Pi). Given initial conditions,

let F (0) denote the σ-algebra corresponding to the initial conditions and, for all k ∈ N≥1, let F (k) denote the
σ-algebra defined by the initial conditions and the random variables {x(1), . . . ,x(k)}. Then, the following
assumption is made on the stochastic gradient estimator.

Assumption 5.2. For all k ∈ N and for all i = 1, . . . , n, the random variables ξ(k)i are independent of each
other. The stochastic gradient estimator satisfies

E[∇Fi(x
(k)
i ; ξ

(k)
i) | F (k)] = ∇fi(x(k)i), for all i = 1, . . . , n.

14

In addition, there exists σ ∈ R>0 such that for all k ∈ N and for all i = 1, . . . , n, it holds that

E[∥∇Fi(x
(k)
i ; ξ

(k)
i)−∇fi(x(k)i)∥2 | F (k)] ≤ σ2.

Besides Assumptions 5.1 and 5.2, our analysis of Algorithm 1 uses the following reformulation of (14b)–
(14c). (The same reformulation has been used in the literature; see, e.g., Song et al. (2022).)[

x(k+1)

g(k+1)

]
=

[
W(k) −αW(k)

0 W(k)

] [
x(k)

g(k)

]
+

[
0

∇F(x(k+1); ξ(k+1))−∇F(x(k); ξ(k)).

]
(16)

We now introduce the notation
j∐

i=t

W(i) △
= W(t)W(t−1) · · ·W(j),

for all t ≥ j ≥ 0. Then, one can observe that[
W(t) −αW(t)

0 W(t)

]
· · ·
[
W(j) −αW(j)

0 W(j)

]
=

[∐j
i=t W

(i) −α(t− j + 1)
∐j

i=t W
(i)

0
∐j

i=t W
(i)

]
.

Consequently, it holds for all k ∈ N≥1 that

x(k) =

(
0∐

i=k−1

W(i)

)
x(0) − α

k−1∑
j=0

(k − j)

(
j∐

i=k−1

W(i)

)(
∇F(x(j), ξ(j))−∇F(x(j−1), ξ(j−1))

)
. (17)

5.2 Convergence Analysis for Algorithm 1
This section presents the convergence results of Algorithm 1, which relies on two important inequalities. The
descent inequality establishes the convergence of the averaged iterates x̄(k) ≜ 1

n

∑n
i=1 x

(k)
i to a first-order

stationary point of (1). The consensus inequality reveals the per-iteration behavior of the consensus error
x̂(k) ≜ x(k)−x̄(k) where x̄(k) ≜ 1n⊗x̄(k), and will be used to show that each agent’s parameter x(k)i converges
to the average x̄(k).

Lemma 5.1 (Descent Inequality). Let Assumptions 5.1 and 5.2 hold, let the mixing matrices {W (l)}τ−1
l=0 ⊂

Rn×n satisfy Definition 3.1, and let the stepsize α satisfy α ∈ (0, 1
2L]. Then, the sequence generated by

Algorithm 1 satisfies

E∥∇f(x(k))∥2 + E∥∇f(x̄(k))∥2 ≤ 4

α

(
E f̃(x̄(k))− E f̃(x̄(k+1))

)
+

2L2

n
E∥x̂(k)∥2 + 2αLσ2

n
, (18)

for all k ∈ N.

The left-hand side of (18) is the (expected) gradient norm, which aligns with our main convergence result
(see Theorem 5.3). Such a convergence result is common in stochastic unconstrained optimization; see, e.g.,
Bertsekas and Tsitsiklis (2000), which analyzes (centralized) Stochastic Gradient methods (SGD).

The second lemma is on the consensus inequality and establishes that all agents’ parameters converge to
their average.

Lemma 5.2 (Consensus Inequality). Let Assumptions 5.1 and 5.2 hold, let the mixing matrices {W (l)}τ−1
l=0 ⊂

Rn×n satisfy Definition 3.1, and let the stepsizes satisfy α ∈
(
0, 1

4
√
3τ2L

]
. Then, for T ∈ N≥τ , the sequence

generated by Algorithm 1 satisfies

1

T + 1

T∑
k=τ

E
∥∥x̂(k)

∥∥2 ≤ 2

T + 1

τ∑
k=0

E∥x̂(k)∥2 + n

96(T + 1)τ4L2

T∑
k=0

E∥∇f(x̄(k))∥2 +
(

1

384τ4L2
+

n

6τL2

)
σ2.

(19)

15

Note that the first summation term on the right-hand side of (19) relies on the first τ +1 iterates of x̂(k),
and recall that τ is a prescribed constant for Algorithm 1. Hence, the term 2

T+1

∑τ
k=0 E∥x̂(k)∥2 can be

viewed as a constant when we study the asymptotic behavior of the consensus error.
The consensus inequality (19) is used in tandem with the descent inequality (18) to show that the

consensus error in (18) vanishes asymptotically. Hence, not only does the averaged parameter asymptotically
reach a stationary point of (1), but all the agents’ parameters also converge (because they reach a consensus).
Theorem 5.3 formally presents this result.

Theorem 5.3. Let Assumptions 5.1 and 5.2 hold, let the mixing matrices {W (l)}τ−1
l=0 ⊂ Rn×n satisfy Defi-

nition 3.1, and let the stepsizes satisfy α ∈
(
0, 1

4
√
3τ2L

]
. Then, for T ∈ N≥τ , the sequence {x(k)} generated

by Algorithm 1 satisfies

1

T + 1

T∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x̄(k))∥2

)
≤ γ1τ

2L2

T
+
γ2σ

2

τ
+
γ3σ

2

τ2n
,

with some constants (γ1, γ2, γ3) ∈ R>0 × R>0 × R>0.

After further tuning the stepsize α, we can derive the final rate of convergence. (The stepsize tuning
technique is common in the literature (Alghunaim, 2023; Karimireddy et al., 2020; Koloskova et al., 2020;
Stich, 2019).)

Corollary 5.4. Let Assumptions 5.1 and 5.2 hold, let the mixing matrices {W (l)}τ−1
l=0 ⊂ Rn×n satisfy

Definition 3.1, and let α = min
{(

c0
c1T

) 1
2 ,
(

c0
c2T

) 1
3 , 1

2L ,
1

4
√
3τ2L

}
, where c0 = L2, c1 = Lσ2

n , and c2 = τ3L2σ2.
Then, for T ∈ N≥τ , the sequence {x(k)} generated by Algorithm 1 satisfies

1

T + 1

T∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x̄(k))∥2

)
≤ γ4τ

2L3

T
+
γ5τL

2σ
2
3

T
2
3

+ γ6

(
L3σ2

nT

) 1
2

,

for some constants (γ4, γ5, γ6) ∈ R>0 × R>0 × R>0.

Similarly to Ying et al. (2021), we weaken the rate’s dependence on L by imposing a warm-up strategy
(e.g., AllReduce (Assran et al., 2019)) to force all agents’ parameters and tracking variables in the τ + 1 to
be the same. This leads us to the following corollary.

Corollary 5.5. Let Assumptions 5.1 and 5.2 hold, let the mixing matrices {W (l)}τ−1
l=0 ⊂ Rn×n satisfy

Definition 3.1, and let α = min
{(

c0
c1T

) 1
2 ,
(

c0
c2T

) 1
3 , 1

2L ,
1

4
√
3τ2L

}
, where c0 = 1, c1 = Lσ2

n , and c2 = τ3L2σ2.
Suppose a warm-up strategy (e.g., AllReduce) is applied to force all agents’ parameters and tracking variables
in the first period to be the same:

τ∑
k=0

E∥x(k) − x̄(k)∥2 = 0.

Then, for T ∈ N≥τ , the sequence {x(k)} generated by Algorithm 1 satisfies

1

T + 1

T∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x̄(k))∥2

)
≤ γ7τ

2L

T
+ γ8τ

(
Lσ

T

) 2
3

+ γ9

(
Lσ2

nT

) 1
2

,

for some constants (γ7, γ8, γ9) ∈ R>0 × R>0 × R>0.

Discussion and comparison with other analyses for TV-GT. We note that our rate depends on
the finite-time consensus parameter τ , and, remarkably, is independent of the connectivity of any of the
individual elements of the finite-time consensus graphs. This contrasts, for example, the rate derived in
Song et al. (2022), which depends on the smallest connectivity (in expectation) of the set of all time-varying

16

topologies used in the algorithm. Thus, their analysis cannot handle finite-time consensus graphs because
some elements in such a deterministic topology sequence can be disconnected. The underlying reason for
the incapability is that their analysis examines the “worst” topology in the sequence but fails to consider the
joint effect of the entire topology sequence.

Moreover, the superiority of GT-FT can be demonstrated via comparison with TV-GT restricted to the
static exponential graphs. Without loss of generality, we assume the number of agents is n = 2τ for some
τ ∈ N≥1, and a number of τ one-peer exponential graphs (satisfying Definition 3.1) are used in GT-FT.
In this case, the best existing rate (to our knowledge) (Song et al., 2022) depends on the spectral gap
1− ρ = 2/(1 + τ) of the static exponential graph with node size n = 2τ (Ying et al., 2021), and reads as

O

(
σ2

nϵ2

)
+O

(
σ(1 + τ)

3
2

ϵ
3
2

)
+O

(
(1 + τ)2

ϵ

)
,

where the Lipschitz constant L is omitted in Song et al. (2022). In comparison, it follows from Corollary 5.5
that the iteration complexity of GT-FT using a sequence of τ one-peer exponential graphs is given by

O

(
Lσ2

nϵ2

)
+O

(
τ

3
2Lσ

ϵ
3
2

)
+O

(
τ2L

ϵ

)
.

Ignoring the Lipschitz constants as in Song et al. (2022), we find that this implementation of GT-FT has a
similar iteration complexity than TV-GT using a static exponential graph. Remarkably, this slight improve-
ment in convergence rate comes with a significant decrease in communication cost: The maximum degree
of a static exponential graph is Θ(log2 n) while that of a single one-peer exponential graph is Θ(1). Similar
comparisons can also be performed for p-peer hyper-cuboids and static hyper-cuboids.

6 Numerical Experiments
In this section, we present numerical results to verify our theoretical findings. The purpose of the numerical
experiments is two-fold. First, numerical evidence is provided to verify that the graph sequences studied
in Section 3 satisfy the finite-time consensus property. Moreover, we conduct numerical experiments that
incorporate the studied graph sequences into decentralized optimization algorithms. The numerical results
demonstrate that GT-FT using graph sequences with finite-time consensus property converges at the same
rate as TV-GT using the static counterparts.

6.1 Finite-Time Consensus Property
In this section, we verify in numerical experiments that the presented topology sequences satisfy the exact
averaging property within a finite number of iterations. To do so, we simulate an average consensus problem.
Each agent is initialized with a random vector x(0)i ∼ N (0,Σ) drawn from a Gaussian distribution (with
Σ ∈ Sd++). The iterates x(k)i evolve according to the recursion x

(k+1)
i = W (k)x

(k)
i for i = 1, . . . , n, and the

consensus error at each iteration is defined as

Ξ(k) ≜
1

n

n∑
i=1

∥x(k)i − x̄(0)∥2,

where we define x̄(0) ≜ 1
n

∑n
i=1 x

(0)
i .

Besides illustrating the exact averaging property of the studied time-varying topologies, we compare these
dynamic graphs with their corresponding static variant. Given a sequence of graphs G(l) = (V,W (l), E(l))
with l = 0, 1, . . . , τ − 1, its static variant G(static) =

(
V,W (static), E(static)

)
is defined by

E(static) = E(0) ∪ E(1) ∪ · · · ∪ E(τ−1),

17

0 2 4 6 8 10 12
Iterations

10−11

10−9

10−7

10−5

10−3

10−1

101

C
on

se
ns

us
E

rr
or

Static Hyper-Cuboid 24

p-P Hyper-Cuboid 24

1-P Exponential 32

1-P Hyper-Cube 32

Static Exponential 32

Static Hyper-Cube 32

Static de Bruijn 32

Static Hyper-Cuboid 36

p-P Hyper-Cuboid 36

1-P Exponential 64

1-P Hyper-Cube 64

Static Exponential 64

Static Hyper-Cube 64

Static de Bruijn 64

Static Hyper-Cuboid 72

p-P Hyper-Cuboid 72

1-P Exponential 128

1-P Hyper-Cube 128

Static Exponential 128

Static Hyper-Cube 128

Static de Bruijn 128

Static Hyper-Cuboid 360

p-P Hyper-Cuboid 360

Figure 3: Consensus error versus the number of iterations. The legend is composed of three parts. The first part
is either “Static”, “1-P”, or “p-P”, standing for static graphs, one-peer time-varying graphs, and p-peer time-varying
graphs, respectively. The second part of the legend describes the graph type: exponential, hyper-cube, de Bruijn,
or hyper-cuboid. The third part is for the number of agents. All graphs satisfying Definition 3.1 are plotted with
dashed lines, while others are plotted with a solid line.

and the weight matrix W (static) is normalized to be doubly stochastic. (More discussion on the static variants
of a sequence of (dynamic) graphs can be found in de Bruijn (1946); Harary et al. (1988); Shi et al. (2016);
Ying et al. (2021).)

Figure 3 presents the simulation results. In Figure 3, the topology sequences satisfying Definition 3.1 have
a steep drop in the consensus error (see dashed lines), indicating the vanishing of the consensus error. For
topologies that do not satisfy Definition 3.1, we observe that the consensus error decreases asymptotically
(at an exponential rate).

6.2 Gradient Tracking with Finite-Time Consensus Topologies
The simulation in Section 6.1 demonstrates the usefulness of some topology sequences in solving the average
consensus problem in a few iterations. However, the benefits of using these topology sequences may not
necessarily translate when we use decentralized optimization algorithms. In this section, we provide numerical
evidence to verify the theoretical guarantees established in Section 5 and to demonstrate the potential benefits
of the finite-time consensus property in decentralized optimization algorithms.

We apply GT-FT to solve the least squares problem with a nonconvex regularization term:

minimize
1

n

n∑
i=1

∥Aix− bi∥2 + µ

d∑
j=1

x[j]2

1 + x[j]2
,

where the optimization variable is x ∈ Rd, x[j] denotes the jth component of x, and the data {Ai, bi} is held
exclusively by agent i. This problem instance is used extensively when studying decentralized algorithms for
nonconvex problems, and we follow existing conventions to construct the problem data (see, e.g., Alghunaim
and Yuan (2022); Xin et al. (2021)). The entries in each data matrix Ai ∈ Rm×d are drawn IID from
the distribution N (0, 1), and so are the vectors {x̃i}ni=1 ⊂ Rd. The vector bi ∈ Rd is then computed by
bi = Aix̃i + δzi, where δ ∈ R>0 is a prescribed constant and zi ∈ Rd is random noise with entries drawn IID

18

0 200 400 600 800 1000
Iterations

10−9

10−6

10−3

100

103

‖∇
f(

x̄(k
))
‖2

+
‖∇

f(
x(k

))
‖2

GT-FT with One-Peer Exponential Graphs

TV-GT with Static Exponential Graph

DGD with One-Peer Exponential Graphs

DGD with Static Exponential Graph

(a) Agents use true gradients.

0 200 400 600 800 1000
Iterations

10−2

10−1

100

101

102

103

‖∇
f(

x̄(k
))
‖2

+
‖∇

f(
x(k

))
‖2

GT-FT with One-Peer Exponential Graphs

TV-GT with Static Exponential Graph

DGD with One-Peer Exponential Graphs

DGD with Static Exponential Graph

(b) Agents use stochastic gradients.

Figure 4: Comparison of the use of one-peer exponential graphs and static exponential graphs in decentralized
optimization algorithms. One-peer exponential graphs are used in GT-FT and DGD, and static exponential
graphs are used in TV-GT and DGD.

from N (0, 1). In all the experiments, we set m = 500, d = 20, and δ = 10. The number of agents (n) might
vary in the experiments and will be specified later.

6.2.1 One-Peer Exponential Graphs

We first analyze the use of one-peer exponential graphs in decentralized optimization algorithms. We consider
a sequence of one-peer exponential graphs of size n = 64 and its static counterpart. The sequence of one-peer
exponential graphs is incorporated into GT-FT and DGD, while the static exponential graph is incorporated
into TV-GT and DGD. For GT-FT and TV-GT, we use the stepsize α = 10−4 while for DGD, we use the
stepsize α = 10−4. Furthermore, we consider the case where agents have access to the true gradients and the
case where agents only have access to the stochastic gradient estimates. The stochastic gradient is formed by
adding Gaussian noise to the true gradient, i.e., ∇̂f i(x) = ∇fi(x)+ si with si ∼ N (0, σ2Id). The magnitude
of the gradient noise can be controlled by the constant σ2, and we set σ2 = 10−4 in the experiments.

The simulation results are presented in Figure 4 and match the theoretical findings in Section 5.2. We
observe from Figure 4 that when true gradients are used, the convergence rate of decentralized algorithms
using one-peer exponential graphs is similar to that using static exponential graphs. For example, the con-
vergence rate of GT-FT using one-peer exponential graphs matches that of TV-GT using static exponential
graphs. Similar performance is observed for DGD, but DGD using one-peer exponential graphs converges
to a slightly worse solution than DGD using static exponential graphs. The same observations translate
when stochastic gradients are used. In view of this similar rate of convergence, using one-peer exponential
graphs in decentralized algorithms shows another advantage (besides the finite-time consensus property).
Recall that the maximum degree of a static exponential graph is Θ(log2 n) while that of a single one-peer
exponential graph is Θ(1). Thus, the mixing matrices {W (l)}τ−1

l=0 of one-peer exponential graphs are much
sparser than the weight matrix W (static) of the static exponential graph. In the context of decentralized
algorithms, it means that using one-peer exponential graphs would reduce communication costs compared
with using the static counterpart.

6.2.2 p-Peer Hyper-Cuboids

Next, we analyze the use of p-peer hyper-cuboids in decentralized optimization algorithms. We consider a
sequence of p-peer hyper-cuboids of size n = 72 and its static counterpart, the static hyper-cuboid. The
sequence of p-peer hyper-cuboids is incorporated into GT-FT and DGD, while the static hyper-cuboid is

19

0 200 400 600 800 1000
Iterations

10−9

10−6

10−3

100

103

‖∇
f(

x̄(k
))
‖2

+
‖∇

f(
x(k

))
‖2

GT-FT with P-Peer Hyper-Cuboid Graphs

TV-GT with Static Hyper-Cuboid Graph

DGD with P-Peer Hyper-Cuboid Graphs

DGD with Static Hyper-Cuboid Graph

(a) Agents use true gradients.

0 200 400 600 800 1000
Iterations

10−2

10−1

100

101

102

103

‖∇
f(

x̄(k
))
‖2

+
‖∇

f(
x(k

))
‖2

GT-FT with P-Peer Hyper-Cuboid Graphs

TV-GT with Static Hyper-Cuboid Graph

DGD with P-Peer Hyper-Cuboid Graphs

DGD with Static Hyper-Cuboid Graph

(b) Agents use stochastic gradients.

Figure 5: Comparison of the use of p-peer hyper-cuboids and static hyper-cuboids in decentralized optimiza-
tion algorithms. p-peer hyper-cuboids are used in GT-FT and DGD, and static hyper-cuboids are used in
TV-GT and DGD.

incorporated into TV-GT and DGD. For GT-FT and TV-GT, we use the stepsize α = 10−4 while for DGD,
we use the stepsize α = 10−4. Again, we consider the case where agents have access to the true gradients
and the case where stochastic gradients are used. The stochastic gradients are formed just as in the one-peer
exponential experiment, and we again use σ2 = 10−4.

The simulation results are presented in Figure 5 and match the theoretical findings in Section 5.2. It is
observed from Figure 5 that p-peer hyper-cuboids exhibit the same behavior as one-peer exponential graphs.
When true gradients are available, the convergence rate of decentralized algorithms using p-peer hyper-
cuboids is similar to that using static hyper-cuboids. For example, the convergence rate of GT-FT using
p-peer hyper-cuboids matches that of TV-GT using static hyper-cuboids. Similar performance is observed
for DGD, but DGD using p-peer hyper-cuboids converges to a slightly worse solution. The same observations
translate when agents only have access to the stochastic gradients. Again, this matching convergence rate
indicates that using p-peer hyper-cuboids reduces the per-iteration communication cost as each p-peer hyper-
cuboid is much sparser than its static counterpart. Note that the maximum degree of a p-peer hyper-cuboid
is the largest prime factor of n minus one, while the maximum degree of a static hyper-cuboid is equal to
the sum of the prime factors of n minus the number of prime factors plus one.

6.2.3 Discussion on GT-FT and DGD

We conclude this section with a short discussion on the performance of GT-FT and DGD. When true
gradients are used (and a constant stepsize is applied), GT-FT converges to a significantly better solution than
DGD. The theoretical rationale for the better performance of GT methods over DGD has been thoroughly
studied in the literature (Alghunaim and Yuan, 2022; Alghunaim et al., 2021; Koloskova et al., 2020; Yuan
et al., 2016). With a constant stepsize, DGD converges to a sub-optimal solution biased proportionally to
the magnitude of heterogeneity between agents (Koloskova et al., 2020; Yuan et al., 2016). In comparison,
as a GT method, GT-FT is able to correct this bias caused by heterogeneity, and converges to a better
solution (Alghunaim and Yuan, 2022; Alghunaim et al., 2021). However, when agents can only use stochastic
gradients, our experiments indicate that the difference in the quality of the solutions returned by GT-FT and
DGD is much smaller. This is because both the gradient noise and the heterogeneity bias affect the computed
solution returned by GT-FT and DGD. This phenomenon has already been observed for GT methods and
DGD using a static topology (Alghunaim and Yuan, 2022).

20

7 Conclusions
We study several sequences of graphs that satisfy the finite-time consensus property, including the one-
peer exponential graphs, one-peer hyper-cubes, p-peer hyper-cuboids, and de Bruijn graphs. For each class
of graphs, we present an explicit weight matrix representation and theoretically justify their finite-time
consensus property. In particular, to the best of our knowledge, p-peer hyper-cuboids are the only available
class of sparse graphs with arbitrary node sizes for which the finite-time consensus property is proven
to hold. Moreover, we incorporate the studied topology sequences into the Gradient Tracking methods
for decentralized optimization. Our analysis shows that the convergence rate of the proposed algorithmic
scheme does not depend on the connectivity of any individual graph in the topology sequence, and the new
scheme requires significantly lower communication costs compared with Gradient Tracking using the static
counterpart of the topology sequence.

Although incorporating graph sequences with finite-time consensus in decentralized optimization algo-
rithms has shown to be successful, several open questions remain. Despite the various graph sequences
studied in Section 3, it is still unclear how to formulate sufficient and necessary conditions for the finite-time
consensus property. Besides, the incorporation of finite-time consensus topologies into other decentralized
algorithms, such as EXTRA or Exact Diffusion, is not straightforward and is left for future work.

References
Sulaiman A. Alghunaim. Local exact-diffusion for decentralized optimization and learning. arXiv preprint

arXiv:2302.00620, 2023.

Sulaiman A. Alghunaim and Kun Yuan. A unified and refined convergence analysis for non-convex decen-
tralized learning. IEEE Transactions on Signal Processing, 70:3264–3279, June 2022.

Sulaiman A. Alghunaim and Kun Yuan. An enhanced gradient-tracking bound for distributed online stochas-
tic convex optimization. arXiv preprint arXiv:2301.02855, 2023.

Sulaiman A. Alghunaim, Ernest K. Ryu, Kun Yuan, and Ali H. Sayed. Decentralized proximal gradient
algorithms with linear convergence rates. IEEE Transactions on Automatic Control, 66(6):2787–2794,
June 2021.

Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike Rabbat. Stochastic gradient push for distributed
deep learning. In International Conference on Machine Learning, pages 344–353, 2019.

Amotz Bar-Noy, Shlomo Kipnis, and Baruch Schieber. An optimal algorithm for computing census functions
in message-passing systems. Parallel Processing Letters, 3(01):19–23, 1993.

Dimitri P. Bertsekas and John N. Tsitsiklis. Gradient convergence in gradient methods with errors. SIAM
Journal on Optimization, 10(3):627–642, 2000.

Federico S. Cattivelli and Ali H. Sayed. Diffusion LMS strategies for distributed estimation. IEEE Trans.
Signal Process, 58(3):1035, 2010.

Harold Scott Macdonald Coxeter. Regular Polytopes. Courier Corporation, 1973.

Tao Cui, Lijun Chen, and Tracey Ho. Distributed optimization in wireless networks using broadcast advan-
tage. In 2007 46th IEEE Conference on Decision and Control, pages 5839–5844, 2007.

Nicolaas G. de Bruijn. A combinatorial problem. Proceedings of the Section of Sciences of the Koninklijke
Nederlandse Akademie van Wetenschappen te Amsterdam, 49(7):758–764, 1946.

Jean-Charles Delvenne, Ruggero Carli, and Sandro Zampieri. Optimal strategies in the average consensus
problem. Systems & Control Letters, 58(10-11):759–765, 2009.

21

Paolo Di Lorenzo and Gesualdo Scutari. Next: In-network nonconvex optimization. IEEE Transactions on
Signal and Information Processing over Networks, 2(2):120–136, 2016.

Lisang Ding, Kexin Jin, Bicheng Ying, Kun Yuan, and Wotao Yin. DSGD-CECA: Decentralized SGD with
communication-optimal exact consensus algorithm. arXiv preprint arXiv:2306.00256, 2023.

Frank Harary, John P. Hayes, and Horng-Jyh Wu. A survey of the theory of hypercube graphs. Computers
& Mathematics with Applications, 15(4):277–289, 1988. ISSN 0898-1221.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 2nd edition, 2013.

Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai, Nishant Patil, Suvinay
Subramanian, Andy Swing, Brian Towles, Cliff Young, Xiang Xhou, Zongwei Zhou, and David Patterson.
TPU v4: an optically reconfigurable supercomputer for machine learning with hardware support for em-
beddings. In Proceedings of the 50th Annual International Symposium on Computer Architecture, pages
1–14, 2023.

Soummya Kar and José M. F. Moura. Distributed consensus algorithms in sensor networks: Link failures
and channel noise. IEEE Transactions on Signal Processing, 57(1):355–369, Jan. 2009.

Soummya Kar and José M. F. Moura. Distributed consensus algorithms in sensor networks: Quantized data
and random link failures. IEEE Transactions on Signal Processing, 58(3):1383–1400, 2010.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In International
Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified theory of
decentralized SGD with changing topology and local updates. In International Conference on Machine
Learning, pages 5381–5393, 2020.

Anastasiia Koloskova, Tao Lin, and Sebastian U. Stich. An improved analysis of gradient tracking for
decentralized machine learning. Advances in Neural Information Processing Systems, 34:11422–11435,
2021.

Daniel Krenn, Dimbinaina Ralaivaosaona, and Stephan Wagner. Multi-base representations of integers:
asymptotic enumeration and central limit theorems. Applicable Analysis and Discrete Mathematics, 9(2):
285–312, 2015.

Guanghui Lan, Soomin Lee, and Yi Zhou. Communication-efficient algorithms for decentralized and stochas-
tic optimization. Mathematical Programming, 2018.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long,
Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter server. In
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pages 583–598,
Broomfield, CO, Oct. 2014.

Zhi Li, Wei Shi, and Ming Yan. A decentralized proximal-gradient method with network independent step-
sizes and separated convergence rates. IEEE Transactions on Signal Processing, 67(17):4494–4506, Sept.
2019.

Cassio G. Lopes and Ali H. Sayed. Diffusion least-mean squares over adaptive networks. In IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, volume 3, pages 917–920, Honolulu, HI,
USA, 2007.

Angelia Nedić, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed optimization
over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633, 2017.

22

Angelia Nedić, Alex Olshevsky, and Michael G. Rabbat. Network topology and communication-computation
tradeoffs in decentralized optimization. Proceedings of the IEEE, 106(5):953–976, 2018.

Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce algorithms for clusters of workstations. Journal
of Parallel Distributed Computing, 69(2):117–124, 2009.

Shi Pu, Wei Shi, Jinming Xu, and Angelia Nedić. Push–pull gradient methods for distributed optimization
in networks. IEEE Transactions on Automatic Control, 66(1):1–16, 2020.

Guannan Qu and Na Li. Harnessing smoothness to accelerate distributed optimization. IEEE Transactions
on Control of Network Systems, 5(3):1245–1260, Sept. 2018.

Gesualdo Scutari and Ying Sun. Distributed nonconvex constrained optimization over time-varying digraphs.
Mathematical Programming, 176(1-2):497–544, 2019.

Guodong Shi, Bo Li, Mikael Johansson, and Karl Henrik Johansson. Finite-time convergent gossiping.
IEEE/ACM Transactions on Networking, 24(5):2782–2794, oct 2016.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. EXTRA: An exact first-order algorithm for decentralized
consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

Zhuoqing Song, Weijian Li, Kexin Jin, Lei Shi, Ming Yan, Wotao Yin, and Kun Yuan. Communication-
efficient topologies for decentralized learning with O(1) consensus rate. Advances in Neural Information
Processing Systems, 35:1073–1085, 2022.

Sebastian U. Stich. Unified optimal analysis of the (stochastic) gradient method. arXiv preprint
arXiv:1907.04232, 2019.

Srinivasan Sundhar Ram, Angelia Nedić, and Venugopal V. Veeravalli. Distributed stochastic subgradient
projection algorithms for convex optimization. Journal of Optimization Theory and Applications, 147(3):
516–545, 2010.

Yuki Takezawa, Ryoma Sato, Han Bao, Kenta Niwa, and Makoto Yamada. Beyond exponential graph:
Communication-efficient topologies for decentralized learning via finite-time convergence. arXiv preprint
arXiv:2305.11420, 2023.

Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. D2: Decentralized training over decentralized
data. In International Conference on Machine Learning, pages 4848–4856, Stockholm, Sweden, 2018.

Blake E. Woodworth, Jialei Wang, Adam Smith, Brendan McMahan, and Nati Srebro. Graph oracle mod-
els, lower bounds, and gaps for parallel stochastic optimization. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 31. Curran Associates, Inc., 2018.

Chenguang Xi, Van Sy Mai, Ran Xin, Eyad H Abed, and Usman A. Khan. Linear convergence in optimization
over directed graphs with row-stochastic matrices. IEEE Transactions on Automatic Control, 63(10):3558–
3565, 2018.

Ran Xin, Usman A. Khan, and Soummya Kar. An improved convergence analysis for decentralized online
stochastic non-convex optimization. IEEE Transactions on Signal Processing, 69:1842–1858, 2021.

Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Augmented distributed gradient methods for
multi-agent optimization under uncoordinated constant stepsizes. In Proc. 54th IEEE Conference on
Decision and Control (CDC), pages 2055–2060, Osaka, Japan, 2015.

23

Bicheng Ying, Kun Yuan, Yiming Chen, Hanbin Hu, Pan Pan, and Wotao Yin. Exponential graph is
provably efficient for decentralized deep training. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages
13975–13987. Curran Associates, Inc., 2021.

Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent. SIAM Journal
on Optimization, 26(3):1835–1854, 2016.

Kun Yuan, Bicheng Ying, Xiaochuan Zhao, and Ali H. Sayed. Exact diffusion for distributed optimization
and learning–Part I: Algorithm development. IEEE Transactions on Signal Processing, 67(3):708–723,
2019. doi: 10.1109/TSP.2018.2875898.

Baosen Zhang, Albert Y. S. Lam, Alejandro D. Domínguez-García, and David Tse. An optimal and dis-
tributed method for voltage regulation in power distribution systems. IEEE Transactions on Power
Systems, 30(4):1714–1726, 2015. doi: 10.1109/TPWRS.2014.2347281.

A More Details for de Bruijn Graphs
This section includes more details of the de Bruijn graphs. Section A.1 presents the Kronecker representation
of de Bruijn graphs. Section A.2 describes the connection between de Bruijn graphs and p-peer hyper-cuboids
and presents the proof of Proposition 3.5. In Section A.3, we apply Algorithm 1 with de Bruijn graphs and
present the numerical results.

A.1 Definition and Kronecker representation
A de Bruijn graph has n = pτ nodes with (p, τ) ∈ N≥2 × N≥1, and the construction of its edges relies on
a p-based representation of integers. Such a representation is an element in the group

∏τ−1
i=0 Np, where Np

is the group of nonnegative integers modulo p. As before, we shorten the notation by overloading binary
representation and denote the p-based representation of i ∈ {0, 1, . . . , n− 1} as (iτ−1iτ−2 . . . i0)p, so that we
can also re-write {a} × {b} as (a, b)p. Then, recall from (12) that the mixing matrix of a de Bruijn graph
with node size n = pτ is defined by

wij =

{
1
p if (iτ−2iτ−3 . . . i0)p = (jτ−1jτ−2 . . . j1)p

0 otherwise.

The above connection condition is equivalent to that a (directed) edge exists from node i to node j if the
p-based representation of i is shifted to the left and a new bit is added to the end of the representation that
equals j. As an example, consider the de Bruijn graph with node size n = 23. The vertex i = 3 has a 2-based
representation of (011)2. Shifting to the left and adding a new bit to the end of the representation leads us
to find (110)2 and (111)2. So this means an edge exists from i = 3 to j = 6, 7.

Furthermore, similar to the p-peer hyper-cuboids, we show that the mixing matrix of a de Bruijn graph
also has a concise Kronecker product form (with minor modifications). To do so, we need the following
lemma on the properties of Kronecker products.

Lemma A.1. For n = pτ with (p, τ) ∈ N≥2 × N≥1 and for all vectors {al}τ−1
l=0 , there exists a permutation

matrix Ps ∈ Rn×n such that

Ps(aτ−1 ⊗ aτ−2 ⊗ · · · ⊗ a0) = a0 ⊗ aτ−1 ⊗ · · · ⊗ a1.

Moreoever, it holds that P τ
s = In.

24

Proof. The first result follows directly from Horn and Johnson (2013, Section 12.3). The second result follows
by repeatedly applying the first one:

P τ
s (aτ−1 ⊗ aτ−2 ⊗ · · · ⊗ a0) = P τ−1

s (a0 ⊗ aτ−1 ⊗ · · · ⊗ a1) = · · · = aτ−1 ⊗ aτ−2 ⊗ · · · ⊗ a0.

This permutation matrix Ps is called the perfect shuffle matrix (Horn and Johnson, 2013, Section 12.3),
hence the subscript “s” in Ps. We then present the matrix form of de Bruijn graphs:

W =

n−1∑
i=0

n−1∑
j=0

wijeie
T
j

=
∑
iτ−1

∑
iτ−2

· · ·
∑
i1

∑
i0︸ ︷︷ ︸

i

∑
jτ−1

∑
jτ−2

· · ·
∑
j1

∑
j0︸ ︷︷ ︸

j

w(iτ−1···i1i0),(jτ−1···j1j0)(êiτ−1
⊗ · · · ⊗ êi0)(êjτ−1

⊗ · · · ⊗ êj0)
T

=
∑
iτ−1

∑
iτ−2

· · ·
∑
i1

∑
i0

∑
jτ−1

∑
jτ−2

· · ·
∑
j1

∑
j0

wij(êiτ−1
⊗ · · · ⊗ êi0)(êj0 ⊗ · · · ⊗ êj1)

TPT
s

=
∑
iτ−1

∑
j0

∑
iτ−2

· · ·
∑
i1

∑
i0

(
1

p
(êiτ−1

êTj0)⊗ (êiτ−2
êTiτ−2

)⊗ · · · ⊗ (êi1 ê
T
i1)⊗ (êi0 ê

T
i0)

)
PT
s

=

(∑
iτ−1

∑
j0

1

p
êiτ−1

êTj0

)
⊗
(∑

iτ−2

êiτ−2
êTiτ−2

)
⊗ · · · ⊗

(∑
i1

êi1 ê
T
i1

)
⊗
(∑

i0

êi0 ê
T
i0

)PT
s

=
(
Jp ⊗ I ⊗ · · · ⊗ I ⊗ I

)
PT
s , (20)

where Jp ≜ 1
p1p1

T
p and the above derivation uses the same properties as in (11a)–(11c).

Compared with the topology sequences studied in Section 3, de Bruijn graphs achieve finite-time consensus
without varying the instance; W τ = 1

n11
T for W ∈ Rn×n defined in (12). Delvenne et al. (2009) has already

proved this result, and here we provide an alternative proof using the Kronecker representation (20).

Proposition A.2. Given n = pτ with (p, τ) ∈ N≥2 × N≥1, let W ∈ Rn×n be the weight matrix defined
in (12). The matrix W is symmetric and doubly stochastic. In addition, it holds that

W τ =W · · ·W︸ ︷︷ ︸
τ times

= 1
n11

T = Jn;

i.e., the finite-time consensus property (3.1) holds with W (0) = · · · =W (τ−1) :=W .

Proof. The key step to prove the finite-time consensus of de Bruijn graph is the following identity

Ps

(
Aτ−1 ⊗Aτ−2 ⊗ · · · ⊗A1 ⊗A0

)
PT
s =

(
A0 ⊗Aτ−1 ⊗ · · · ⊗A2 ⊗A1

)
, (21)

where {Ai}τ−1
i=0 are any arbitrary p × p matrices. The above identity is straightforward to see because left-

multiplying Ps is equivalent to shifting the rows of the matrix and right-multiplying Ps]
T is equivalent to

shift the columns of the matrix. Using this property, it follows that

W 2 =
(
Jp ⊗ I ⊗ · · · ⊗ I ⊗ I

)
PT
s

(
Jp ⊗ I ⊗ · · · ⊗ I ⊗ I

)
PT
s

= (PT
s)

2P 2
s

(
Jp ⊗ I ⊗ · · · ⊗ I ⊗ I

)
(PT

s)
2Ps

(
Jp ⊗ I ⊗ · · · ⊗ I ⊗ I

)
PT
s (22)

= (PT
s)

2
(
I ⊗ I ⊗ Jp ⊗ · · · ⊗ I

)(
I ⊗ Jp ⊗ · · · ⊗ I ⊗ I

)
= (PT

s)
2
(
I ⊗ Jp ⊗ Jp ⊗ · · · ⊗ I

)
,

where (22) uses PT
s Ps = I.

25

4

0

1

5 2 7

3

6

Figure 6: The de Bruijn graph of with node size n = 8, p = 2 and τ = 3.

Continuing the above step τ -times, we establish

W τ =W τ−3
(
Jp ⊗ I ⊗ · · · ⊗ I ⊗ I

)
(PT

s)
3
(
I ⊗ Jp ⊗ Jp ⊗ · · · ⊗ I

)
...

= (PT
s)

τ
(
Jp ⊗ Jp ⊗ Jp ⊗ · · · ⊗ Jp

)
= Jn,

where the last equality uses (Ps)
τ = I.

The doubly stochastic property follows by definition of the de Bruijn graph, and can also be verified
using the same approach as done for the hyper-cuboids.

A.2 Connection between de Bruijn Graphs and p-Peer Hyper-Cuboids
In this section, we establish the connection between de Bruijn graphs and p-peer hyper-cuboids (when
n = pτ). In particular, we restate and prove Proposition 3.5.

Proposition A.3. Given n = pτ with (p, τ) ∈ N≥2 × N≥1, let Wdb ∈ Rn×n be the weight matrix of the
de Bruijn matrix defined in (12) and {W (l)

hc }l∈N be the weight matrices of the p-peer hyper-cuboids defined
in (8). Then for any l ∈ {0, 1, . . . , τ − 1}, it holds that

W
(τ−l)
hc = (PT

s)
l+1WdbP

l
s .

Proof. It follows from the definition of p-peer hyper-cuboids (8) that

W
(τ−l)
hc = I ⊗ · · · ⊗ I︸ ︷︷ ︸

l−1 times

⊗Jp ⊗ I · · · ⊗ I (23a)

= (PT
s)

l(Jp ⊗ I ⊗ · · · ⊗ I ⊗ I)P l
s (23b)

= (PT
s)

lPT
s Ps(Jp ⊗ I ⊗ · · · ⊗ I ⊗ I)P l

s (23c)

= PT
s (P

T
s)

lWdbP
l
s . (23d)

Step (23a) uses the definition of the hyper-cuboid presented in (11c). Step (23b) applies the property
described in (21) l times to shift Jp to the beginning. Step (23c) uses the fact that PT

s Ps = I. Step (23d)
uses the definition of de Bruijn graphs in (20).

Proposition A.3 implies that de Bruijn graphs and hyper-cuboids are permutation equivalent. Moreover,
note that the similarity transformation (PT

s)
lWdbP

l
s is merely relabeling the nodes.

26

A.3 Numerical Experiments
We analyze the performance of de Bruijn graphs in decentralized optimization algorithms. We consider
a de Bruijn graph of size n = 64 and consider its performance in GT-FT and DGD. We use the stepsizes
α = 10−4 in GT-FT and the stepsize α = 10−4 in DGD. We again consider the case where agents have access
to true gradients and the case where agents only have access to stochastic gradients. The stochastic gradients
are formed as in the one-peer exponential experiment, and we set σ2 = 10−4. The simulation results are
presented in Figure 7, and the performance is similar to the experiments performed in Section 6.2.

0 200 400 600 800 1000
Iterations

10−9

10−6

10−3

100

103

‖∇
f(

x̄(k
))
‖2

+
‖∇

f(
x(k

))
‖2

GT-FT with Static de Bruijn Graph

DGD with Static de Bruijn Graph

(a) Agents use true gradients.

0 200 400 600 800 1000
Iterations

10−3

10−2

10−1

100

101

102

103

‖∇
f(

x̄(k
))
‖2

+
‖∇

f(
x(k

))
‖2

GT-FT with Static de Bruijn Graph

DGD with Static de Bruijn Graph

(b) Agents use stochastic gradients.

Figure 7: Results of using de Bruijn graphs in GT-FT and DGD.

B Supplementary Materials for Section 5
This section includes the missing proofs from Section 5. To begin with, we introduce a list of notations that
will be used extensively in the analysis of Algorithm 1:

x̄(k) ≜ 1n ⊗ x̄(k), x̄(k) ≜
1

n

n∑
i=1

x
(k)
i , (24a)

ḡ(k) ≜ 1n ⊗ ḡ(k), ḡ(k) ≜
1

n

n∑
i=1

g
(k)
i , (24b)

x̂(k) ≜ x(k) − x̄(k), (24c)

∇f(x(k)) ≜
1

n

n∑
i=1

∇fi(x(k)i), (24d)

∇f(x(k)) ≜ ∇f(x(k))⊗ Id, (24e)

s(k) ≜ ∇F(x(k), ξ(k))−∇f(x(k)), (24f)

s̄(k) ≜
1

n

n∑
i=1

(∇Fi(x
(k)
i ; ξ

(k)
i)−∇fi(x(k)

i)), (24g)

Ŵ(k) ≜ W(k) − 1

n
1n1

T
n ⊗ Id, (24h)

Î ≜ Idn − 1

n
1n1

T
n ⊗ Id. (24i)

27

B.1 Proof of Descent Inequality
The following lemma describes the updates on the centroid recursion x̄(k) and will be used in the proof of
the descent inequality (Lemma 5.1.

Lemma B.1 (Centroid Recursion). The sequence {x(k)} generated by Algorithm 1 satisfies

x̄(k+1) = x̄(k) − α(∇f(x(k)) + s̄(k)).

Proof. Multiplying (15b) with 1
n1n1

T
n ⊗ Id yields

x̄(k+1) = x̄(k) − αḡ(k). (25)

Similarly, multiplying (15c) with 1
n1n1

T
n ⊗ Id yields

ḡ(k) = ḡ(k−1) +

n∑
i=1

∇Fi(x
(k)
i ; ξ

(k)
i)−

n∑
i=1

∇Fi(x
(k−1)
i ; ξ

(k−1)
i)

= ḡ(k−1) + (∇f(x(k)) + s̄(k))− (∇f(x(k−1)) + s̄(k−1)) (26)

= ∇f(x(k)) + s̄(k), (27)

where the second equality follows by definition (24d) and (24g), and the third equality follows from the
following induction. Considering the initialization g(0) = ∇F(x(0); ξ(0)), the base case is ḡ(0) = ∇f(x(0)) +
s̄(0). For the inductive step, we assume that ḡ(k−1) = ∇f(x(k−1)) + s̄(k−1). Now, we need to show

ḡ(k) = ∇f(x(k)) + s̄(k),

which holds by substituting the induction hypothesis ḡ(k−1) = ∇f(x(k−1)) + s̄(k−1) into (26). Consequently,
the desired result follows by combing (25) and (27).

Proof of Lemma 5.1. The L-smoothness of f in Assumption 5.1 implies that for all y, z ∈ int dom f ,

f(y) ≤ f(z) + ⟨∇f(z), y − z⟩+ L

2
∥y − z∥2.

Setting y = x̄(k+1), z = x̄(k), and using Lemma B.1 yields

f(x̄(k+1)) ≤ f(x̄(k))− α⟨∇f(x̄(k)),∇f(x(k)) + s̄(k)⟩+ α2L

2
∥∇f(x(k)) + s̄(k)∥2.

Taking the conditional expectation on the filtration F (k) gives

E[f(x̄(k+1)) | F (k)] ≤ f(x̄k)− αE[⟨∇f(x̄(k)),∇f(x(k)) + s̄(k)⟩ | F (k)]

+
α2L

2
E[∥∇f(x(k)) + s̄(k)∥2 | F (k)]. (28)

The unbiasedness of the stochastic gradient estimator in Assumption 5.2 implies

E[⟨∇f(x̄(k)), s̄(k)⟩ | F (k)] = ⟨∇f(x̄(k)),E[s̄(k) | F (k)]⟩ = 0. (29)

Similarly, one has from Assumption 5.2 that

E[∥∇f(x(k)) + s̄(k)∥2 | F (k)]

= E[∥∇f(x(k))∥2 | F (k)] + E[∥s̄(k)∥2 | F (k)] + E[⟨∇f(x(k)), s̄(k)⟩ | F (k)]

= E[∥∇f(x(k))∥2 | F (k)] + E[∥s̄(k)∥2 | F (k)] + E[⟨∇f(x(k)), s̄(k)⟩ | F (k)]

28

= E[∥∇f(x(k))∥2 | F (k)] + E[∥s̄(k)∥2 | F (k)] + ⟨∇f(x(k)),E[s̄(k) | F (k)]⟩
≤ E[∥∇f(x(k))∥2 | F (k)] + σ2

n . (30)

Substituting (29) and (30) into (28) gives

E[f(x̄(k+1)) | F (k)] ≤ f(x̄(k))− αE[⟨∇f(x̄(k)),∇f(x(k))⟩ | F (k)]

+
α2L

2
E[∥∇f(x(k))∥2 | F (k)] +

α2Lσ2

2n
. (31)

It follows from the identity 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2 that

− ⟨∇f(x̄(k)),∇f(x(k))⟩

= −1

2
∥∇f(x̄(k))∥2 − 1

2
∥∇f(x(k))∥2 + 1

2
∥∇f(x̄(k))−∇f(x(k))∥2

= −1

2
∥∇f(x̄(k))∥2 − 1

2
∥∇f(x(k))∥2 + 1

2

∥∥∥ 1
n

n∑
i=1

∇fi(x̄(k))−
1

n

n∑
i=1

∇fi(x(k)i)
∥∥∥2 (32a)

≤ −1

2
∥∇f(x̄(k))∥2 − 1

2
∥∇f(x(k))∥2 + 1

2n

n∑
i=1

∥∥∥∇fi(x̄(k))−∇fi(x(k)i)
∥∥∥2 (32b)

≤ −1

2
∥∇f(x̄(k))∥2 − 1

2
∥∇f(x(k))∥2 + L2

2n

n∑
i=1

∥∥∥x̄(k) − x
(k)
i

∥∥∥2 (32c)

= −1

2
∥∇f(x̄(k))∥2 − 1

2
∥∇f(x(k))∥2 + L2

2n
∥x̂(k)∥2. (32d)

In (32a), we apply the definitions in (1) and (24d), and (32b) uses Jensen’s inequality. In (32c), we use
Assumption 5.1, and finally in (32d), we use the definition (24c).

Substituting (32d) into (31) and taking total expectation, one finds that

E f(x̄(k+1)) ≤ E f(x̄(k))− α(1− αL)

2
E∥∇f(x(k))∥2 − α

2
E∥∇f(x̄(k))∥2

+
αL2

2n
E∥x̂(k)∥2 + α2Lσ2

2n
.

It then follows from the stepsize condition α ≤ 1
2L that

E f(x̄(k+1)) ≤ E f(x̄(k))− α

4
E∥∇f(x(k))∥2 − α

2
E∥∇f(x̄(k))∥2 + αL2

2n
E∥x̂(k)∥2 + α2Lσ2

2n
.

Forming a looser bound by replacing −α
2 E∥∇f(x̄k)∥2 with −α

4 E∥∇f(x̄k)∥2, rearranging, and then adding
and subtracting f∗ on the right-hand side, one finally obtains that

E∥∇f(x(k))∥2 + E∥∇f(x̄(k))∥2 ≤ 4

α

(
E f̃(x̄(k))− E f̃(x̄(k+1))

)
+

2L2

n
E∥x̂(k)∥2 + 2αLσ2

n
,

where f̃ ≜ f − f∗. This completes the proof.

B.2 Proof of Consensus Inequality
The following lemma is a restatement of Lemma 11 in Song et al. (2022). The result follows directly as
GT-FT satisfies all the assumptions listed in Song et al. (2022, Lemma 11), and will be used in the proof of
Lemma 5.2.

29

Lemma B.2. Let Assumptions 5.1 and 5.2 hold. If α ≤ 1
L , it holds for j ≥ 1 that

E
[∥∥∥∇f(x(j))−∇f(x(j−1))

∥∥∥2∣∣∣∣F (k)

]
≤ 6α2nL2 E

[
∥∇f(x̄(j−1))∥2|F (k)

]
+ 9L2 E

[
∥x̂(j−1)∥2|F (k)

]
+ 3L2 E

[
∥x̂(j)∥2|F (k)

]
+ 3α2L2σ2.

Now, we present the proof of Lemma 5.2.

Proof of Lemma 5.2. Recall from (17) that for all k ≥ 1, the iterates x(k) satisfies that

x(k) =

(
0∐

i=k−1

W(i)

)
x(0) − α

k−1∑
j=0

(k − j)

(
j∐

i=k−1

W(i)

)(
∇F(x(j), ξ(j))−∇F(x(j−1), ξ(j−1))

)
, (33)

where for convenience we set ∇F(x(−1), ξ(−1)) = s(−1) = ∇f(x(−1)) = 0. Recall the finite-time consensus
parameter τ ∈ N≥1 from Definition 3.1, and assume k− 1 ≥ τ . Thus, at least one pass through the topology
sequence satisfying Definition 3.1 has been performed. Then, (33) can be rewritten as

x(k) =

(
0∐

i=k−1

W(i)

)
x̂(0) − α

k−1−τ∑
j=0

(k − j)

(
j∐

i=k−1

W(i)

)(
∇F(x(j), ξ(j))−∇F(x(j−1), ξ(j−1))

)

− α

k−1∑
j=k−τ

(k − j)

(
j∐

i=k−1

W(i)

)(
∇F(x(j), ξ(j))−∇F(x(j−1), ξ(j−1))

)
(34)

where we split the summation. Multiplying by Î defined in (24i) on both sides of (34) yields

x̂(k) =

(
0∐

i=k−1

Ŵ(i)

)
x̂(0) − α

k−1−τ∑
j=0

(k − j)

(
j∐

i=k−1

Ŵ(i)

)(
∇F(x(j), ξ(j))−∇F(x(j−1), ξ(j−1))

)

− α

k−1∑
j=k−τ

(k − j)

(
j∐

i=k−1

Ŵ(i)

)(
∇F(x(j), ξ(j))−∇F(x(j−1), ξ(j−1))

)
.

From Definition 3, each W(i) is doubly stochastic, and the topology sequence satisfies the finite-time con-
sensus property. Algorithm 1 cycles through a topology sequence satisfying Definition 3 repeatedly in the
same order. Using these facts, we further simplify the above equation as follows

x̂(k) = −α
k−1∑

j=k−τ

(k − j)

(
j∐

i=k−1

Ŵ(i)

)(
∇F(x(j), ξ(j))−∇F(x(j−1), ξ(j−1))

)
, (35)

since by assumption k − 1 ≥ τ . Splitting (35) via the definition (24f) gives

x̂(k) = −α
k−1∑

j=k−τ

(k − j)

(
j∐

i=k−1

Ŵ(i)

)(
∇f(x(j))−∇f(x(j−1))

)
− α

k−1∑
j=k−τ

(k − j)

(
j∐

i=k−1

Ŵ(i)

)(
s(j) − s(j−1)

)
.

Rearranging the second term on the right-hand side gives

x̂(k) = −α
k−1∑

j=k−τ

(k − j)
(j∐

i=k−1

Ŵ(i)
)(

∇f(x(j))−∇f(x(j−1))
)
− αŴ(k−1)s(k−1)

30

− α

k−2∑
j=k−τ

(
(k − j)

(j∐
i=k−1

Ŵ(i)
)
− (k − j − 1)

(j+1∐
i=k−1

Ŵ(i)
))

s(j).

Then, the expectation of ∥x̂(k)∥2 conditioned on F (k) is bounded by

E
[∥∥x̂(k)

∥∥2∣∣F (k)
]

≤ 2E
[∥∥∥− α

k−1∑
j=k−τ

(k − j)
(j∐

i=k−1

Ŵ(i)
)(

∇f(x(j))−∇f(x(j−1))
)∥∥∥2∣∣∣F (k)

]

2E
[∥∥∥− αŴ(k−1)s(k−1) − α

k−2∑
j=k−τ

(
(k − j)

(j∐
i=k−1

Ŵ(i)
)
− (k − j − 1)

(j+1∐
i=k−1

Ŵ(i)
))

s(j)
∥∥∥2∣∣∣F (k)

]
, (36)

where we use Jensen’s inequality. We now bound the two terms on the right-hand side of (36) one by one.
The second term on the right-hand side of (36) can be bounded as

E
[∥∥∥− αŴ(k−1)s(k−1) − α

k−2∑
j=k−τ

(
(k − j)

(j∐
i=k−1

Ŵ(i)
)
− (k − j − 1)

(j+1∐
i=k−1

Ŵ(i)
))

s(j)
∥∥∥2∣∣∣F (k)

]
= α2 E

[∥∥Ŵ(k−1)s(k−1)
∥∥2∣∣F (k)

]
+ α2

k−2∑
j=k−τ

E
[∥∥∥((k − j)

(j∐
i=k−1

Ŵ(i)
)
− (k − j − 1)

(j+1∐
i=k−1

Ŵ(i)
))

s(j)
∥∥∥2∣∣∣F (k)

]
(37a)

≤ α2nσ2 + α2
k−2∑

j=k−τ

E
[∥∥∥((k − j)

(j∐
i=k−1

Ŵ(i)
)
− (k − j − 1)

(j+1∐
i=k−1

Ŵ(i)
))

s(j)
∥∥∥2∣∣∣F (k)

]
(37b)

≤ α2nσ2 + 2α2
k−2∑

j=k−τ

E
[(

(k − j)2
∥∥∥ j∐

i=k−1

Ŵ(i)
∥∥∥2 + (k − j − 1)2

∥∥∥ j+1∐
i=k−1

Ŵ(i)
∥∥∥2)∥s(j)∥2∣∣∣F (k)

]
(37c)

≤ α2nσ2 + 4α2τ2
k−2∑

j=k−τ

E
[
∥s(j)∥2

∣∣∣F (k)
]

(37d)

≤ α2nσ2 + 4α2τ2
k−2∑

j=k−τ

nσ2 (37e)

≤ 4α2τ3nσ2. (37f)

In (37a) we use the independence of the gradient noise, and (37b) follows because the doubly stochastic matrix
Ŵ(k) satisfies ∥Ŵ(i)∥2 ≤ 1 and the gradient estimate error s(k) has bounded variance from Assumption 5.2.
Then, (37c) uses the properties of matrix norms, and in (37d) we use the fact that k − j − 1 < k − j ≤ τ

and that ∥Ŵ(i)∥2 ≤ 1. In (37e) we use the bounded variance assumption (Assumption 5.2) and finally (37f)
uses the fact that τ ≥ 1.

We then bound the first term on the right-hand side of (36) as follows.

E
[∥∥∥− α

k−1∑
j=k−τ

(k − j)
(j∐

i=k−1

Ŵ(i)
)(

∇f(x(j))−∇f(x(j−1))
)∥∥∥2∣∣∣F (k)

]

= α2 E
[∥∥∥ k−1∑

j=k−τ

(k − j)
(j∐

i=k−1

Ŵ(i)
)(

∇f(x(j))−∇f(x(j−1))
)∥∥∥2∣∣∣F (k)

]

31

≤ α2τ3
k−1∑

j=k−τ

E
[∥∥∥(j∐

i=k−1

Ŵ(i)
)(

∇f(x(j))−∇f(x(j−1))
)∥∥∥2∣∣∣F (k)

]
(38a)

≤ α2τ3
k−1∑

j=k−τ

E
[∥∥∇f(x(j))−∇f(x(j−1))

∥∥2∣∣∣F (k)
]

(38b)

≤ α2τ3
k−1∑

j=k−τ

(
2α2nL2 E

[
∥∇f(x̄(j−1))∥2

∣∣F (k)
]
+ 9L2 E

[
∥x̂(j−1)∥2

∣∣F (k)
]
+ 3L2 E

[
∥x̂(j)∥2

∣∣F (k)
]

+ 2α2L2σ2
)
. (38c)

In (38a) we use Jensen’s inequality and the fact that k − 1 − mτ ≤ τ , and (38b) follows from the sub-
multiplicative property of matrix norms and the fact that ∥Ŵ(i)∥2 ≤ 1. Then, (38c) uses Lemma B.2.

Substituting (37f) and (38c) into (36) yields

E
[∥∥x̂(k)

∥∥2∣∣F (k)
]
≤ 6α4τ3nL2

k−1∑
j=k−τ

E
[
∥∇f(x̄(j−1))∥2|F (k)

]
+ 9α2τ3L2

k−1∑
j=k−τ

E
[
∥x̂(j−1)∥2|F (k)

]
+ 3α2τ3L2

k−1∑
j=k−τ

E
[
∥x̂(j)∥2|F (k)

]
+ (3α4τ4L2 + 4α2τ3n)σ2. (39)

Recall that the above analysis uses the exact averaging property (in (35)), and thus the iteration counter k
must satisfy k − 1 ≥ τ . Thus, one can sum up (39) over iteration k from τ + 1 to T (T ≥ τ + 1) and obtain

T∑
k=τ+1

E
[∥∥x̂(k)

∥∥2∣∣F (k)
]
≤ 6α4τ3nL2

T∑
k=τ+1

k−1∑
j=k−τ

E
[
∥∇f(x̄(j−1))∥2|F (k)

]
+ 9α2τ3L2

T∑
k=τ+1

k−1∑
j=k−τ

E
[
∥x̂(j−1)∥2|F (k)

]
+ 3α2τ3L2

T∑
k=τ+1

k−1∑
j=k−τ

E
[
∥x̂(j)∥2|F (k)

]
+ (T − τ + 1)(3α4τ4L2 + 4α2τ3n)σ2.

Adding
∑τ

k=0 E[∥x̂(k)∥2|F (k)] and dividing T + 1 on both sides yields

1

T + 1

T∑
k=0

E
[∥∥x̂(k)

∥∥2∣∣F (k)
]

≤ 6α4τ3nL2

T + 1

T∑
k=τ+1

k−2∑
j=k−τ−1

E
[
∥∇f(x̄(j))∥2|F (k)

]
+

1

T + 1

τ∑
k=0

E[∥x̂(k)∥2 | F (k)]

+
9α2τ3L2

T + 1

T∑
k=τ+1

k−2∑
j=k−τ−1

E
[
∥x̂(j)∥2|F (k)

]
+

3α2τ3L2

T + 1

T∑
k=τ+1

k−1∑
j=k−τ

E
[
∥x̂(j)∥2|F (k)

]
+

(T − τ + 1)

T + 1
(3α4τ4L2 + 4α2τ3n)σ2. (40)

Observe that for any constant T ∈ N and for any sequence {ψj} ⊂ R, there exists a nonnegative sequence
{βj} ⊂ R≥0 such that βj ≤ 2τ for j = 0, 1, . . . , T and

T∑
k=τ+1

k−1∑
j=k−τ

ψj =

T∑
k=1

βkψk ≤ 2τ

T∑
k=0

ψk,

T∑
k=τ+1

k−2∑
j=k−τ−1

ψj =

T−1∑
k=0

βkψk ≤ 2τ

T∑
k=0

ψk.

32

Hence, the following bounds hold

6α4τ3nL2

T + 1

T∑
k=τ+1

k−2∑
j=k−τ−1

E
[
∥∇f(x̄(j))∥2|F (k)

]
≤ 12α4τ4nL2

T + 1

T∑
k=0

E
[
∥∇f(x̄(k))∥2|F (k)

]
,

9α2τ3L2

T + 1

T∑
k=τ+1

k−2∑
j=k−τ−1

E
[
∥x̂(j)∥2|F (k)

]
≤ 18α2τ4L2

T + 1

T∑
k=0

E
[
∥x̂(k)∥2|F (k)

]
,

3α2τ3L2

T + 1

T∑
k=τ+1

k−1∑
j=k−τ

E
[
∥x̂(j)∥2|F (k)

]
≤ 6α2τ4L2

T + 1

T∑
k=0

E
[
∥x̂(k)∥2|F (k)

]
.

Using these bounds in (40) gives

1

T + 1

T∑
k=0

E
[∥∥x̂(k)

∥∥2∣∣F (k)
]
≤ 12α4τ4nL2

T + 1

T∑
k=0

E
[
∥∇f(x̄(k))∥2|F (k)

]
+

1

T + 1

τ∑
k=0

E[∥x̂(k)∥2 | F (k)]

+
24α2τ4L2

T + 1

T∑
k=0

E
[
∥x̂(k)∥2|F (k)

]
+
T − τ + 1

T + 1
(3α4τ4L2 + 4α2τ3n)σ2,

or equivalently,

1− 24α2τ4L2

T + 1

T∑
k=0

E
[
∥x̂(k)∥2

∣∣F (k)
]
≤ 12α4τ4nL2

T + 1

T∑
k=0

E
[
∥∇f(x̄(k))∥2

∣∣F (k)
]
+

1

T + 1

τ∑
k=0

E[∥x̂(k)∥2 | F (k)]

+
T − τ + 1

T + 1
(3α4τ4L2 + 4α2τ3n)σ2. (41)

The stepsize condition

α ≤ 1

4
√
3τ2L

(42)

implies that 1− 24α2τ4L2 ≥ 1
2 . Substituting this into (41) gives

1

T + 1

T∑
k=0

E
[
∥x̂(k)∥2

∣∣F (k)
]
≤ 24α4τ4nL2

T + 1

T∑
k=0

E
[
∥∇f(x̄(k))∥2|F (k)

]
+

2

T + 1

τ∑
k=0

E[∥x̂(k)∥2 | F (k)] +

(
1− τ

T + 1

)
(6α4τ4L2 + 8α2τ3n)σ2. (43)

One can further take the total expectation, relax (1− τ
T+1) to 1, and obtain

1

T + 1

T∑
k=0

E
∥∥x̂(k)

∥∥2 ≤ 24α4τ4nL2

T + 1

T∑
k=0

E∥∇f(x̄(k))∥2 + 2

T + 1

τ∑
k=0

E∥x̂(k)∥2 + (6α4τ4L2 + 8α2τ3n)σ2 (44)

≤ n

96τ4L2(T + 1)

T∑
k=0

E∥∇f(x̄(k))∥2 + 2

T + 1

τ∑
k=0

E∥x̂(k)∥2 +
(

1

384τ4L2
+

n

6τL2

)
σ2,

where the second inequality follows again from the stepsize condition (42).

B.3 Proof of Theorem 5.3
Proof of Theorem 5.3. The result in Lemma 5.1 implies that for all k ∈ N,

E∥∇f(x(k))∥2 + E∥∇f(x̄(k))∥2 ≤ 4

α

(
E f̃(x̄(k))− E f̃(x̄(k+1))

)
+

2L2

n
E∥x̂(k)∥2 + 2αLσ2

n
,

33

where f̃ ≜ f − f∗. Taking the average over k = 0, . . . , T gives

1

T + 1

T∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x̄(k))∥2

)
≤ 4

α(T + 1)
E f̃(x̄(0)) +

2L2

n(T + 1)

T∑
k=0

E∥x̂(k)∥2 + 2αLσ2

n
,

where we use the fact f̃(x) ≥ 0 for any x ∈ dom f . Substituting (44) yields

1

T + 1

T∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x̄(k))∥2

)
≤ 4

α(T + 1)
E f̃(x̄(0)) +

48α4τ4L4

T + 1

T∑
k=0

E∥∇f(x̄(k))∥2 + 4L2

n(T + 1)

τ∑
k=0

E∥x̂(k)∥2

+

(
12α4τ4L4

n
+ 16α2τ3L2 +

2αL

n

)
σ2

≤ 4

α(T + 1)
E f̃(x̄(0)) +

48α4τ4L4

T + 1

T∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x̄(k))∥2

)
+

4L2

n(T + 1)

τ∑
k=0

E∥x̂(k)∥2

+

(
12α4τ4L4

n
+ 16α2τ3L2 +

2αL

n

)
σ2.

By grouping similar terms on the left hand side and simplifying, one finds that

1− 48α4τ4L4

T + 1

T∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x̄(k))∥2

)
≤ 4

α(T + 1)
E f̃(x̄(0)) +

4L2

n(T + 1)

τ∑
k=0

E∥x̂(k)∥2 +
(
12α4τ4L4

n
+ 16α2τ3L2 +

2αL

n

)
σ2.

The stepsize condition α ≤ 1
4
√
3τ2L

implies 48α4L4τ4 ≤ 1
2 . Thus, the above bound becomes

1

T + 1

T∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x̄(k))∥2

)
≤ 8

α(T + 1)
E f̃(x̄(0)) +

8L2

n(T + 1)

τ∑
k=0

E∥x̂(k)∥2 +
(
24α4τ4L4

n
+ 32α2τ3L2 +

4αL

n

)
σ2. (45)

From now on, we use the notation ≲ to hide irrelevant constants. The notation a ≲ b means that there
exists a positive constant γ ∈ R>0 such that a ≤ γb. In our case, the important quantities that we keep are
α, n, L, and σ. Then, (45) can be written as

1

T + 1

T∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x̄(k))∥2

)
≲

1

αT
+
L2

nT
+
α4τ4L4σ2

n
+ α2τ3L2σ2 +

αLσ2

n
.

We then apply the stepsize condition α ∈
(
0, 1

4
√
3τ2L

]
and obtain

1

T + 1

T∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x̄(k))∥2

)
≲

1

αT
+
L2

nT
+
α4τ4L4σ2

n
+ α2τ3L2σ2 +

αLσ2

n

≲
τ2L2

T
+

σ2

nτ4
+
σ2

τ
+

σ2

τ2n

≲
τ2L2

T
+
σ2

τ
+

σ2

τ2n
.

34

Next, we present the proof of Corollary 5.4.

Proof of Corollary 5.4. From the stepsize condition α ∈
(
0, 1

4
√
3τ2L

]
, the result in Theorem 5.3 can be further

simplified as

1

T + 1

T∑
k=0

(
E∥∇f(xk)∥2 + E∥∇f(x̄k)∥2

)
≲

1

αT
+
L2

nT
+
α4τ4L4σ2

n
+ α2τ3L2σ2 +

αLσ2

n

≲
L2

αT
+
α2α2τ4L4σ2

n
+ α2τ3L2σ2 +

αLσ2

n

≲
L2

αT
+
α2τ4L4σ2

τ4L2n
+ α2τ3L2σ2 +

αLσ2

n

≲
L2

αT
+
α2L2σ2

n
+ α2τ3L2σ2 +

αLσ2

n

≲
L2

αT
+ α2τ3L2σ2 +

αLσ2

n

≲
c0
αT

+ c1α+ c2α
2

where c0 = L2, c1 = Lσ2

n , and c2 = τ3L2σ2. Now we set the stepsize α as

α = min

{(
c0
c1T

) 1
2

,

(
c0
c2T

) 1
3

,
1

2L
,

1

4
√
3τ2L

}
.

By definition, this choice of α satisfies the stepsize condition in Theorem 5.3: α ≤ 1
α̃ ≜ min

{
1
2L ,

1
4
√
3τ2L

}
.

We then discuss the following three cases.

(a) α = min

{
1

2L
,

1

4
√
3τ2L

}
≤ min

{(
c0
c1K

) 1
2

,

(
c0
c2T

) 1
3

}
=⇒ c0

αT
+ αc1 + c2α

2 ≲
αc0
T

+
(c0c1
T

) 1
2

+
c

2
3
0 c

1
3
2

T
1
3

;

(b) α =

(
c0
c1T

) 1
2

≤
(
c0
c2T

) 1
3

=⇒ c0
αT

+ c1α+ c2α
2 ≲

c
1
2
0 c

1
2
1

T
1
2

+
c

2
3
0 c

1
3
2

T
2
3

;

(c) α =

(
c0
c2T

) 1
3

≤
(
c0
c1T

) 1
2

=⇒ c0
αT

+ c1α+ c2α
2 ≲

c
2
3
0 c

1
3
2

T
2
3

+
(c0c1
T

) 1
2

.

Combining all three cases yields

c0
αT

+ c1α+ c2α
2 ≲

αc0
T

+ c
1
3
2

(c0
T

) 2
3

+ c
1
2
1

(c0
T

) 1
2

≲
τ2Lc0
T

+ c
1
3
2

(c0
T

) 2
3

+ c
1
2
1

(c0
T

) 1
2

≲
τ2L3

T
+ τL2

(σ
T

) 2
3

+

(
L3σ2

nT

) 1
2

.

Now we present the proof of Corollary 5.5.

Proof of Corollary 5.5. If we perform the AllReduce warm-up strategy, it holds that
∑τ

k=0

(
E∥x̂(k)∥2

)
= 0.

Starting from (45), we can then find

1

T + 1

T∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x̄(k))∥2

)

35

≤ 8

α(T + 1)
E f̃(x̄(0)) +

(
24α4τ4L4

n
+ 32α2τ3L2 +

4αL

n

)
σ2.

≲
1

αT
+
α4τ4L4σ2

n
+ α2τ3L2σ2 +

αLσ2

n
.

We then apply the stepsize condition α ∈
(
0, 1

4
√
3τ2L

]
and obtain

1

T + 1

T∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x̄(k))∥2

)
≲

1

αT
+
α4τ4L4σ2

n
+ α2τ3L2σ2 +

αLσ2

n

≲
1

αT
+
α2L2σ2

n
+ α2τ3L2σ2 +

αLσ2

n

≲
τ2L

T
+
σ2

τ
+

σ2

τ2n
.

The result in Theorem 5.3 can be further simplified as

1

T + 1

T∑
k=0

(
E∥∇f(xk)∥2 + E∥∇f(x̄k)∥2

)
≲

1

αT
+
α2L2σ2

n
+ α2τ3L2σ2 +

αLσ2

n

≲
1

αT
+ α2τ3L2σ2 +

αLσ2

n

≲
c0
αT

+ c1α+ c2α
2,

where c0 = 1, c1 = Lσ2

n , and c2 = τ3L2σ2. Now we set the stepsize α as

α = min

{(
c0
c1T

) 1
2

,

(
c0
c2T

) 1
3

,
1

2L
,

1

4
√
3τ2L

}
.

By definition this choice of α satisfies the stepsize condition in Theorem 5.3: α ≤ 1
α̃ ≜ min

{
1
2L ,

1
4
√
3τ2L

}
.

We then discuss the following three cases.

(a) α = min

{
1

2L
,

1

4
√
3τ2L

}
≤ min

{(
c0
c1K

) 1
2

,

(
c0
c2T

) 1
3

}
=⇒ c0

αT
+ αc1 + c2α

2 ≲
αc0
T

+
(c0c1
T

) 1
2

+
c

2
3
0 c

1
3
2

T
1
3

;

(b) α =

(
c0
c1T

) 1
2

≤
(
c0
c2T

) 1
3

=⇒ c0
αT

+ c1α+ c2α
2 ≲

c
1
2
0 c

1
2
1

T
1
2

+
c

2
3
0 c

1
3
2

T
2
3

;

(c) α =

(
c0
c2T

) 1
3

≤
(
c0
c1T

) 1
2

=⇒ c0
αT

+ c1α+ c2α
2 ≲

c
2
3
0 c

1
3
2

T
2
3

+
(c0c1
T

) 1
2

.

Combining all three cases yields

c0
αT

+ c1α+ c2α
2 ≲

αc0
T

+ c
1
3
2

(c0
T

) 2
3

+ c
1
2
1

(c0
T

) 1
2

≲
τ2Lc0
T

+ c
1
3
2

(c0
T

) 2
3

+ c
1
2
1

(c0
T

) 1
2

≲
τ2L

T
+ τ

(
Lσ

T

) 2
3

+

(
Lσ2

nT

) 1
2

.

36

	Introduction
	Related Work
	Finite-Time Consensus
	Definition of Finite-Time Consensus Property
	One-Peer Exponential Graphs
	One-Peer Hyper-Cube
	p-Peer Hyper-Cuboids

	Algorithm Description
	Gradient Tracking with Time-Varying Topologies
	Gradient Tracking with Finite-Time Consensus Topologies

	Algorithm Analysis
	Assumptions and Transformation of Algorithm 1
	Convergence Analysis for Algorithm 1

	Numerical Experiments
	Finite-Time Consensus Property
	Gradient Tracking with Finite-Time Consensus Topologies
	One-Peer Exponential Graphs
	p-Peer Hyper-Cuboids
	Discussion on GT-FT and DGD

	Conclusions
	More Details for de Bruijn Graphs
	Definition and Kronecker representation
	Connection between de Bruijn Graphs and p-Peer Hyper-Cuboids
	Numerical Experiments

	Supplementary Materials for Section 5
	Proof of Descent Inequality
	Proof of Consensus Inequality
	Proof of Theorem 5.3

