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Abstract

In this paper, we study sparse factorization of the (scaled) square all-ones matrix J of
arbitrary order. We introduce the concept of hierarchically banded matrices and propose two
types of hierarchically banded factorization of J : the reduced hierarchically banded (RHB)
factorization and the doubly stochastic hierarchically banded (DSHB) factorization. Based on
the DSHB factorization, we propose the sequential doubly stochastic (SDS) factorization, in
which J is decomposed as a product of sparse, doubly stochastic matrices. Finally, we discuss
the application of the proposed sparse factorizations to the decentralized average consensus
problem and decentralized optimization.

1 Introduction

We study sparse factorization of the real n× n matrix J := 1
n11

T ∈ Rn×n; that is, we seek to find
a (finite) sequence of matrices {W (k)}qk=1 ⊂ Rn×n such that

W (q)W (q−1) · · ·W (1) =
1

n


1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

 . (1)

This problem finds applications in graph theory, systems and control, decentralized optimization,
and other fields [4, 7, 8]. In this paper, we consider the general case where n is an arbitrary integer
and propose several types of sparse factorization.

Previous work on the sparse factorization of J , or the all-ones matrix J̃ = nJ = 11T, can be
roughly divided into two categories. The first class considers the case in which all the factors are
identical, i.e., W (k) = W for all k ∈ [q]. For example, the binary square root of J̃ (when n = p2

for some p ∈ N≥2) is studied in [2]. The De Bruijn matrix, first proposed in [3], serves as the q-th
root of J̃ when n = pq, and has been extensively studied in the literature [4,10]. For general n, the
g-circulant binary solutions to W q = J̃ have also been investigated [5, 6, 11,12].
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The second class of solutions allows for differing factors of J . Among these solutions include
one-peer exponential graphs (when n = 2q) [13], one-peer hyper-cubes (when n = 2q) [8], and p-peer
hyper-cuboids [7,9]. The p-peer hyper-cuboids serve as a factorization of J for arbitrary n, but the
sparsity of the factors depends on the prime factorization of n. In particular, p-peer hyper-cuboids
are no longer sparse when the matrix order equals a large prime factor. Allowing for different factors
of J , in general, gives greater control over the sparsity of the factors compared to the case in which
all the factors are identical [7].

In this paper, we consider the general case where n ∈ N≥2 is an arbitrary integer and study
sparse factorization of J in the form

J = J0AJ0, (2)

where J0 = J1 ⊕ · · · ⊕ Jτ with Jk := 1
nk
11T ∈ Rnk×nk , k ∈ [τ ]. (Here, ⊕ denotes the direct sum

of two matrices.) Throughout the paper, it is assumed that the partition n =
∑τ

k=1 nk is given,
with conditions that will be specified later (see (3)). Factorization (2) holds for arbitrary matrix
order n and is inspired by the applications of J in decentralized averaging (and optimization).
In decentralized averaging, for example, there is a group of agents where each holds a piece of
information and cooperates with other agents to compute a global quantity. The communication
between agents is modeled by a graph (or a sequence of graphs) G(k) = (V,W (k), E(k)). If the weight
matrices {W (k)} satisfy (1), then the exact global average is computed in q communication rounds.
In modern application scenarios, agents can be abstracted as high-performance computing (HPC)
resources and can be naturally formed into clusters [14]. Such clustering structure is captured
by the proposed form of factorization (2). The block diagonal matrix J0 models the intra-cluster
communication, and each sub-block Jk, k ∈ [τ ], can be further decomposed as (1) into, e.g., g-
circulant matrices or p-peer hyper-cuboids. In contrast, the A-factor models the more expensive
inter-cluster communication, and the main focus of this paper is to design sparse A-factors to reduce
the communication overhead across clusters. Sparsity in A is desirable in decentralized averaging
(and optimization) as the communication overhead is related to the total number of nonzeros nnz(A)
as well as the largest node degree dmax(A) = maxi{Ai,:}, where Ai,: is the ith row of A.

Contributions In this paper, we study the form of factorization in (2) for arbitrary matrix
order n and propose three types of A-factors. In the first two types, the sparse factor A has the
so-called hierarchically banded (HB) structure, and additional properties of A distinguish these two
types of HB factorization: (density) reduced HB and doubly stochastic HB. The third one is called
the sequential doubly stochastic (SDS) factorization and admits an asymmetric, doubly stochastic
factor A, which can be further decomposed as a product of several symmetric, doubly stochastic
matrices. When applied to decentralized optimization, the proposed sparse factorizations provide
more flexibility to balance communication costs and the total number of communication rounds in
a decentralized optimization algorithm.

Notation Let R denote the set of real numbers (i.e., scalars). Let Rn denote the set of n-
dimensional (column) vectors. (In this paper, all vectors are column vectors.) Let Rm×n denote
the set of m-by-n real matrices, and let Dn denote the set of n × n diagonal matrices. The set of
natural numbers is denoted as N := {0, 1, 2, . . .}, and let N≥r denote the set of natural numbers
greater than or equal to r ∈ N. For any n ∈ N, let [n] := {1, 2, . . . , n}. Let 1 denote the all-ones
(column) vector of compatible size. The direct sum of two matrices A ∈ Rm×n and B ∈ Rp×q forms
the block diagonal matrix A⊕B := blkdiag(A,B) ∈ R(m+p)×(n+q).
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Outline In Section 2, we propose the notion of hierarchically banded (HB) matrices. Sections 3
and 4 study two types of HB factorization. The sequential doubly stochastic (SDS) factorization is
discussed in Section 5. In Section 6, we present the potential usefulness of these sparse factorizations
in decentralized averaging and optimization, and concluding remarks are offered in Section 7.

2 Hierarchically banded matrices

Factorization of the form (2) relies on a partition of n ∈ N≥2:

n =
τ∑

k=1

nk, where {nk}τk=1 ⊂ N≥1, and nk ≥
τ∑

j=k+1

nj =: mk for all k ∈ [τ − 1]. (3)

Such a partition can be constructed systematically, e.g., via the base-p representation of n (with
p ∈ N≥2). Overloading the binary representation, we denote the base-p representation of n as
(iτ−1iτ−2 · · · i1i0)p, where τ = ⌊logp(n)⌋ + 1. Then, any integer n ∈ N≥2 can be written as n =∑τ

k=1 nk, where nk = iτ−kp
τ−k. In this case, the condition nk ≥ mk, for all k ∈ [τ − 1], directly

follows from the property of the base-p representation. A simple example is (n, p) = (15, 2), and
(n1, n2, n3, n4) = (8, 4, 2, 1), which follows from the binary representation 15 = (1111)2.

Given such a decomposition (3), we study the factorization in the form of (2), where the matrix
A ∈ Rn×n has the so-called hierarchically banded structure.

Definition 1 (Hierarchically banded matrices). Given n ∈ N≥2 and a partition (3), a real symmetric
n×n matrix A is called hierarchically banded (HB) if there exists a sequence of symmetric matrices
A(k) ∈ Rmk×mk , k ∈ [τ ], such that the following three conditions hold.

• A(1) = A.

• A(τ) ∈ Dnτ is diagonal.

• For all k ∈ [τ − 1], the matrix A(k) can be partitioned as

A(k) =

[
A

(k)
11 A

(k)
12(

A
(k)
12

)T
A

(k)
22

]
, (4)

where A
(k)
11 ∈ Dnk , A

(k)
12 ∈ Rnk×mk have nonzero entries only on the diagonals, and the last

submatrix satisfies A
(k)
22 = A(k+1).

Such a sequence {A(k)}τk=1 is called the hierarchically banded (HB) sequence of A, and the set of
n× n hierarchically banded matrices is denoted by HBn.

The hierarchically banded structure is illustrated in Figure 1. The word “hierarchically” means
that the matrix can be hierarchically partitioned, and this term is inspired by the notion of hierar-
chical matrices (or H-matrices) (see, e.g., [1]). In addition, recall that a symmetric n × n banded
matrix A satisfies

Aij = 0 if j < i− r or j > i+ r,

where r ∈ [n] is called the bandwidth of A.
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[
A

(1)
11 A

(1)
12(

A
(1)
12

)T
A

(1)
22

]
=

A
(1)
22 = A(2)

=

[
A

(2)
11 A

(2)
12(

A
(2)
12

)T
A

(2)
22

]

Figure 1: Illustration of a hierarchically banded matrix.

Factorization (2) with a hierarchically banded factor A is called the hierarchically banded (HB)
factorization of J , and the matrix A ∈ HBn is called the hierarchically banded (HB) factor of J .
It turns out that the hierarchically banded factor A is not unique. In this paper, we study the
following two types of hierarchically banded factorization, characterized by additional properties
of A or the HB sequence A(k) defined in (4).

• Reduced hierarchically banded (RHB) factorization. To further promote the sparsity of the
A-factor, we impose an additional condition that only a few elements in the two bands of
each A(k) are nonzero:

A
(k)
12 [j, j] ̸= 0, if j = 1, 1 + nk+1, 1 + nk+1 + nk+2, . . . , 1 +

τ−1∑
ℓ=1

nk+ℓ,

for all k ∈ [τ − 1]. In A(1), for example, this condition means that the largest cluster (the
one of size n1) communicates with exactly one agent from each of the other clusters. Such a
condition would further reduce the communication overhead, and the HB factor A designed
for this purpose is called the (density) reduced HB factor, which is studied in Section 3.

• Doubly stochastic hierarchically banded (DSHB) factorization. In this case, the factor A is
both hierarchically banded and doubly stochastic, i.e., all the entries in A are nonnegative,
A1 = 1, and AT1 = 1. This additional property of A would be useful in decentralized
optimization. The details are discussed in Section 4.

Moreover, the DSHB factorization inspires another sparse factorization (2) of J , which is called the
sequential doubly stochastic (SDS) factorization. In this factorization, the SDS factor A is doubly
stochastic and additionally can be written as the product of a sequence of symmetric, doubly
stochastic matrices. Although the SDS factor is not hierarchically banded (nor symmetric), it is
closely related to the DSHB factorization and finds its application in decentralized optimization.
The details of the SDS factorization are presented in Section 5.

3 Reduced hierarchically banded factorization

As motivated in Section 2, the (density) reduced hierarchically banded (RHB) factorization further
promotes sparsity in the HB factor A by requiring

A
(k)
12 [j, j] = βk ̸= 0, if j = 1, 1 + nk+1, 1 + nk+1 + nk+2, . . . , 1 +

τ−1∑
ℓ=1

nk+ℓ, (5)
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i.e., only a few nonzeros exist in the diagonal entries of A(k)
12 , and these nonzeros are all equal to

some β ∈ R. In addition, it is also assumed that only one diagonal entry in each A
(k)
11 is not one:

A
(k)
11 = diag(αk, 1, . . . , 1), (6)

for some αk ∈ R. (Other requirements on the diagonal submatrices {A(k)
11 } can be applied, and

they do not affect the idea of density reduction in the RHB factorization. So (6) is chosen for
simplicity.) The RHB factorization is illustrated in Section 3.1 via the simple example where τ = 2,
and Section 3.2 presents an algorithm for the RHB factorization in the general case.

3.1 A two-block example

To illustrate the idea of the RHB factorization, we consider the simple case: τ = 2. In this case,
suppose that n = n1 + n2 with (n1, n2) ∈ N≥n2 × N≥1. Then, the HB factorization (2) reduces to

J =

[
J1

J2

] [
A11 A12

AT
12 A22

] [
J1

J2

]
=

[
J1A11J1 J1A12J2(
J1A12J2

)T
J2A22J2

]
, (7)

where J1 = 1
n1
11T ∈ Rn1×n1 , J2 = 1

n2
11T ∈ Rn2×n2 , A11 ∈ Dn1 , A12 ∈ Rn1×n2 , and A22 ∈ Dn2 .

Expanding (7) yields

J1A11J1 =
1

n
1n11

T
n1
, J1A12J2 =

1

n
1n11

T
n2
, J2A22J2 =

1

n
1n21

T
n2
. (8)

Recall that the condition (6) requires A11 to take the form A11 = diag(α1, 1, . . . , 1) for some α1 ∈ R.
Substituting it into J1A11J1 gives

J1A11J1 =
1

n2
1

1n1

(
1T
n1

diag(α1, 1, . . . , 1)1n1

)
1T
n1

=
α1 + n1 − 1

n2
1

1n11
T
n1
.

Then, combining it with the first condition in (8) yields

α1 =
n2
1

n
− n1 + 1.

Similarly, one obtains that A22 = diag(α2, 1, . . . , 1) with α2 =
n2
2
n −n2+1. Finally, the condition (5)

implies that A12 is nonzero only at the first element: A12[1, 1] := β, and then expanding the second
block J1A12J2 with the condition (6) gives

J1A12J2 =
1

n1n2
1n1

(
1T
n1
A121n2

)
1T
n2

=
β

n1n2
1n11

T
n2
,

Combining it with the second condition in (8) gives A12[1, 1] = β = n1n2
n .
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In conclusion, when n = n1 + n2, the RHB factor A of J is given by

A =



α1 β
1 0

1
. . .

. . . 0
. . .

1

β α2

0 1
. . . . . .

0 1



, (9)

where

α1 =
n2
1

n
− n1 + 1, α2 =

n2
2

n
− n2 + 1, β =

n1n2

n
.

3.2 The RHB factorization algorithm

In this section, we extend the key idea in Section 3.1 to handle the general case n =
∑τ

k=1 nk, where
we denote mk :=

∑τ
i=k+1 ni for k ∈ [τ − 1] and assume that nk ≥ mk for all k ∈ [τ − 1]. Then, the

construction of the RHB factorization of J is summarized in Algorithm 1, which outputs the RHB
factor A that satisfies (2), (6), and (5).

To verify the correctness of Algorithm 1, we start with the case k = 1 and write out the equality
J = J0AJ0 for the partitioned matrices:

1

n
1n1

T
n =

[
J1

J1

][
A

(1)
11 A

(1)
12(

A
(1)
12

)T
A

(1)
22

] [
J1

J1

]
, (12)

where J1 := J2 ⊕ J3 ⊕ · · · ⊕ Jτ ∈ Rm1×m1 . Expanding the above equation gives three conditions
similar to (8):

J1A
(1)
11 J1 =

1

n
1n11

T
n1
, J1A

(1)
12 J1 =

1

n
1n11

T
m1

, J1A
(1)
22 J1 =

1

n
1m11

T
m1

. (13)

It then follows from the condition (6) that

J1A
(1)J1 =

1

n2
1

1n1

(
1T
n1

diag
(
α1, 1, . . . , 1

)
1n1

)
1T
n1

=
α1 + n1 − 1

n2
1

1n11
T
n1
.

Combining it with the first condition in (13) yields α1 =
n2
1
n − n1 + 1.

We now consider the (1, 2)-block J1A
(1)
12 J1. Recall from the condition (5) that the matrix
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Algorithm 1 Reduced hierarchically banded (RHB) factorization algorithm
1: Input: n ∈ N≥2, and the factors {nk}τk=1 satisfying n =

∑τ
k=1 nk and nk ≥ mk =

∑τ
i=k+1 ni

for all k ∈ [τ − 1].
2: Output: The RHB factor A of J , and the associated HB sequence {A(k)}τk=1.
3: Set m0 ← n.
4: for k = 1, 2, . . . , τ − 2 do
5: Compute the (1, 1)-block A

(k)
11 ∈ Dnk of A(k):

A
(k)
11 ← diag

(
n2
k

mk−1
− nk + 1, 1, . . . , 1

)
.

6: Compute the (1, 2)-block A
(k)
12 ∈ Rnk×mk :

A
(k)
12 [i, j]←


nknk+1

n if i = j = 1

nknk+ℓ

n if i = j = 1 +
ℓ∑

r=1
nk+r for ℓ = 1, 2, . . . , τ − k − 1

0 otherwise.

7: Compute the (2, 2)-block A
(k)
22 = A(k+1) as the RHB factorization:

1

mk
1mk

1T
mk

= JkA
(k+1)Jk, (10)

where Jk := Jk+1 ⊕ · · · ⊕ Jτ , and the OHHG factor A(k+1) = A
(k)
22 is partitioned as

A(k+1) =

[
A

(k+1)
11 A

(k+1)
12(

A
(k+1)
12

)T
A

(k+1)
22

]
. (11)

8: end for
9: Set the RHB factor A: A← A(1).

A
(1)
12 ∈ Rn1×m1 can be partitioned as

A
(1)
12 =



B
(1)
2

B
(1)
3

. . .
B

(1)
τ−1

B
(1)
τ

02 03 · · · 0τ−1 0τ


,

where B
(1)
j = diag

(
β
(1)
j , 0, . . . , 0

)
∈ Dnj , and 0j is the all-zeros matrix of size (n1−m1)×nj , for j =

2, . . . , τ . In addition, we denote the diagonal entries of B(1)
j by the nj-vector b

(1)
j = (β

(1)
j , 0, . . . , 0).

Then, it holds that

1T
n1
A

(1)
12 =

[
(b

(1)
2 )T (b

(1)
3 )T · · · (b

(1)
τ )T

]
∈ R1×m1 .
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Then, it holds that

J1A
(1)
12 J =

1

n1
1n1(1

T
n1
A

(1)
12 )J1

=
1

n1
1n1

[(
b
(1)
2

)T (
b
(1)
3

)T · · ·
(
b
(1)
τ

)T] (J2 ⊕ J3 ⊕ · · · ⊕ Jτ
)

=
1

n1
1n1

[
1
n2

(
b
(1)
2

)T
1n21

T
n2

1
n3

(
b
(1)
3

)T
1n31

T
n3
· · · 1

nτ

(
b
(1)
τ

)T
1nτ1

T
nτ

]
=

1

n1
1n1

[
β
(1)
2
n2

1T
n2

β
(1)
3
n2

1T
n3
· · · β

(1)
τ
nτ

1T
nτ

]
=
[

β
(1)
2

n1n2
1n11

T
n2

β
(1)
3

n1n3
1n11

T
n3
· · · β

(1)
τ

n1nτ
1n11

T
nτ

]
∈ Rn1×m1 .

Hence, to satisfy the second condition in (13), we must have for all j = 2, . . . , τ that

β
(1)
j

n1nj
=

1

n
⇐⇒ β

(1)
j =

n1nj

n
.

Finally, we consider the last condition in (13). Denote A(2) := A
(1)
22 and consider the parti-

tion (11). Also notice that J1 = J2 ⊕ (J3 ⊕ · · · ⊕ Jτ ) := J2 ⊕ J2. Then, we write out the last
condition (13) in the partitioned form:

1

n
1m11

T
m1

=

[
J2

J2

][
A

(2)
11 A

(2)
12(

A
(2)
12

)T
A

(2)
22

] [
J2

J2

]
,

which takes the same form as (12). We can repeat the above process for k = 1, 2, . . . , τ − 2. When
Algorithm 1 reaches iteration k = τ − 2, Line Algorithm 1 computes the RHB factorization of the
matrix

A(τ−1) =

[
A

(τ−1)
11 A

(τ−1)
12(

A
(τ−1)
12

)T
A

(τ−1)
22

]
,

which is the two-block case studied in Section 3.1. Thus, the RHB factor of A(τ−1) is in the form
of (9) with

α1 =
n2
τ−1

nτ−1 + nτ
− nτ−1 + 1, α2 =

n2
τ

nτ−1 + nτ
− nτ + 1, β =

nτ−1nτ

nτ−1 + nτ
.

From the above discussion, we obtain the following result.

Theorem 1. The n × n matrix ARHB generated by Algorithm 1 is hierarchically banded, satisfies
the conditions (5)–(6), and satisfies J = J0ARHBJ0. In addition, the total number of nonzeros is
nnz(ARHB) = n+ τ(τ − 1), and the largest node degree is dmax(ARHB) = τ .

Proof. (The subscript in ARHB (and Ã
(k)
RHB) is omitted in the proof for readability.) The hierarchi-

cally banded structure of A follows from the recursive nature of Algorithm 1, and in particular, the
recursive partition of A(k) in Algorithm 1. Similarly, A satisfies the conditions (5)–(6) due to the
assignment of values in A

(k)
11 and A

(k)
12 in Algorithm 1. Next, the factorization J = J0AJ0 = J0A

(1)J0
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holds by recursively applying (10) for k = τ −1, τ −2, . . . , 1. Finally, one has for all k ∈ [τ −1] that
nnz(A

(k)
11 ) = nk, nnz(A

(k)
12 ) = τ − k, and nnz(A(τ)) = nτ . So, the total number of nonzeros is

nnz(A) =
τ−1∑
k=1

(
nk + 2(τ − k)

)
+ nτ = n+ τ(τ − 1).

The row with the most nonzeros is row n − nτ − nτ−1 + 1, where An−nτ−nτ−1+1,j ̸= 0 if j =

1, 1 + n1, 1 + n1 + n2, . . . , 1 +
∑τ−1

k=1 nk, and thus dmax(A) = τ .

4 Doubly stochastic hierarchically banded factorization

Another useful type of hierarchically banded factorization, especially in decentralized optimization
(see Section 6.2 for details), requires the HB factor A to be doubly stochastic, i.e., all the entries are
nonnegative and A1 = 1 (and AT1 = 1, which is guaranteed by the symmetry of A). Yet in this
case, the HB sequence {A(k)} is not doubly stochastic. Instead, we show that each matrix in the
scaled HB sequence {Ã(k)}τk=1 remains doubly stochastic, where

Ã(k) :=
n

mk−1
A(k) ∈ HBmk , k ∈ [τ ]. (14)

Again, the doubly stochastic hierarchically banded (DSHB) factorization is illustrated in Section 4.1
via the simple example where τ = 2, and Section 4.2 presents an algorithm for DSHB factorization
in the general case.

4.1 A two-block example

Similar to Section 3.1, we start with the simple case where τ = 2, and assume n = n1 + n2 with
(n1, n2) ∈ N≥n2 ×N≥1. Then, the HB factorization takes the form of (7), which can be partitioned
as in (8). Recall that in Section 3.1 we require both submatrices A11 and A12 to have only one
nonzero entry. In the context of decentralized optimization, a larger cluster will communicate with
exactly one agent from each of the smaller clusters. This section considers a different setting where
all agents in subgroup 2 (recall n2 ≤ n1) can communicate across subgroups. In particular, the
submatrix A12 ∈ Rn1×n2 takes the following form:

A12 =

[
diag(β1n2)

0

]
.

Substituting into J1A12J2 gives

J1A12J2 =
1

n1n2
1n1

(
1T
n1
A121n2

)
1T
n2

=
β

n1
.

Then, the second condition in (8) implies that

β =
n1

n
=

n1

n1 + n2
.

With the subblock A12 settled, the doubly stochastic property of A implies that the subblocks
A11 ∈ Dn1 and A22 ∈ Dn2 are diagonal matrices satisfying

A11 = diag(1− β, . . . , 1− β︸ ︷︷ ︸
n2

, 1, . . . , 1︸ ︷︷ ︸
n1−n2

), A22 = diag
(
(1− β)1n2

)
.
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Finally, we confirm that this choice of A11 and A22 also satisfies the first and third conditions in (8):

1
n2
1
1n11

T
n1
A111n11

T
n1

=
1T
n1

A111n1

n2
1

1n11
T
n1

= (1−β)n2+(n1−n2)
n2
1

1n11
T
n1

= 1
n1n11

T
n1
,

1
n2
2
1n21

T
n2
A221n21

T
n2

=
1T
n2

A221n2

n2
2

1n21
T
n2

= (1−β)n2

n2
2

1n21
T
n2

= 1
n1n21

T
n2
.

In conclusion, when n = n1 + n2, the doubly stochastic HB factor A of J is

A =

 n2
n In2 0 n1

n In2

0 In1−n2 0
n1
n In2 0 n2

n In1

 . (15)

4.2 The DSHB factorization algorithm

We extend the key idea in Section 3.1 to handle the general case where n =
∑τ

k=1 nk. The construc-
tion of the DSHB factor A, as well as the associated (scaled) HB sequence {A(k)} ({Ã(k)} in (14)),
is summarized in Algorithm 2.

To verify the correctness of Algorithm 2, we start with the iteration k = 1 and write out the
equality J = J0AJ0 for the partitioned matrices:

1

n
1n1

T
n =

[
J1

J1

][
A

(1)
11 A

(1)
12(

A
(1)
12

)T
A

(1)
22

] [
J1

J1

]
,

where recall J1 := J2 ⊕ J3 ⊕ · · · ⊕ Jτ ∈ Rm1×m1 and A(1) = Ã(1). Expanding the above equation
gives three conditions similar to (8):

J1A
(1)
11 J1 =

1

n
1n11

T
n1
, J1A

(1)
12 J1 =

1

n
1n11

T
m1

, J1A
(1)
22 J1 =

1

n
1m11

T
m1

. (19)

For the (1, 2)-block A
(1)
12 , we follow the convention in Section 4.1 and assume that it has the structure

A
(1)
12 =

[
diag

(
β(1)1m1

)
0

]
.

Substituting into J1A
(1)
12 J1 gives

J1A
(1)
12 J1 =

1

n1
1n1

(
1T
n1
A

(1)
12

)
J1 =

β(1)

n1
1n11

T
m1

J1 =
β(1)

n1
1n11

T
m1

.

Combining it with the second condition in (19) yields β(1) = n1
n . Then, the doubly stochastic

property of A implies that

A
(1)
11 = diag

(
m1
n , . . . , m1

n︸ ︷︷ ︸
m1

, 1, . . . , 1︸ ︷︷ ︸
n1−m1

)
, A

(1)
22 1m1 = (1− β(1))1m1 = m1

n 1m1 .

The second equation above is equivalent to the doubly stochastic property of the scaled matrix

Ã(2)1m1 = 1m1 , where Ã(2) :=
n

m1
A

(1)
22 ∈ Rm1×m1 .
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Algorithm 2 Doubly stochastic hierarchically banded (DSHB) factorization algorithm
1: Input: n ∈ N≥2, and the factors {nk}τk=1 satisfying n =

∑τ
k=1 nk and nk ≥ mk =

∑τ
i=k+1 ni

for all k ∈ [τ − 1].
2: Output: The doubly stochastic HB factor A of J , and the associated HB sequence {A(k)}τk=1.
3: Set m−1 ← n and m0 ← n.
4: for k = 1, 2, . . . , τ − 2 do
5: Compute the (1, 1)-block Ã

(k)
11 ∈ Dnk of Ã(k):

Ã
(k)
11 ← diag

(
mk

mk−1
, . . . , mk

mk−1︸ ︷︷ ︸
mk

, 1, . . . , 1︸ ︷︷ ︸
nk−mk

)
. (16)

6: Compute the (1, 2)-block Ã
(k)
12 ∈ Rnk×mk :

Ã
(k)
12 [i, j]←

{
nk

mk−1
if i = j = 1, 2, . . . ,mk

0 otherwise.
(17)

7: Compute the (2, 2)-block Ã
(k)
22 from the DSHB factorization:

1

mk
1mk

1T
mk

= JkÃ
(k+1)Jk, (18)

where Jk := Jk+1 ⊕ · · · ⊕ Jτ , and the DSHB factor Ã(k+1) ← mk−1

mk
Ã

(k)
22 is partitioned as

Ã(k+1) =

[
Ã

(k+1)
11 Ã

(k+1)
12(

Ã
(k+1)
12

)T
Ã

(k+1)
22

]
.

8: end for
9: Set the DSHB factor A ← A(1) ≡ Ã(1) and the associated HB sequence A(k) ← mk−1

n Ã(k), for
all k ∈ [τ ].

Similarly, the third condition in (19) can be written in terms of Ã(2) as

J1Ã
(2)J1 =

1

m1
1m11

T
m1

. (20)

Therefore, to find a doubly stochastic, hierarchically banded matrix Ã(2) that satisfies (20), we
need to construct the DSHB factorization of 1

m1
1m11

T
m1

, which requires recursive execution of the
above process for k = 1, 2, . . . , τ − 2.

When Algorithm 2 reaches iteration k = τ − 2, Line 7 computes the DSHB factor

Ã(τ−1) =

[
Ã

(τ−1)
11 Ã

(τ−1)
12(

Ã
(τ−1)
12

)T
Ã

(τ−1)
22

]
,

which is the two-block case studied in Section 4.1. Thus, the DSHB factor of 1
mτ−2

1mτ−21
T
mτ−2

is

11



in the form of (15):

Ã(τ−1) =

 αInτ 0 βInτ

0 Inτ−1−nτ 0

βInτ 0 αInτ

 , where α =
nτ

nτ−1 + nτ
and β =

nτ−1

nτ−1 + nτ
.

From the above discussion, we obtain the following result.

Theorem 2. The n×n matrix ADSHB generated by Algorithm 2 is doubly stochastic, hierarchically
banded, and satisfies J = J0ADSHBJ0. Each matrix in the scaled HB sequence {Ã(k)

DSHB}τk=1 generated
by Algorithm 2 is doubly stochastic. In addition, nnz(ADSHB) =

∑τ
k=1 knk, and dmax(ADSHB) = τ .

Proof. (The subscript in ADSHB (and Ã
(k)
DSHB) is omitted in the proof for readability.) The doubly

stochastic property of A and {Ã(k)} follows from the assignments (16)–(17) and condition (18).
The hierarchically banded structure of A follows from the recursive nature of Algorithm 2, and
in particular, the recursive partition of Ã(k) in Algorithm 2. Next, the factorization J = J0AJ0
holds by recursively applying (18) for k = τ − 1, τ − 2, . . . , 1. Finally, the number of nonzeros
and the largest node degree can be calculated using the same approach as for the RHB factor in
Theorem 1.

5 Sequential doubly stochastic factorization

The DSHB factorization inspires another type of factorization for J , in which the factor A ∈ Rn×n

in J = J0AJ0 is no longer symmetric (nor hierarchically banded) but remains doubly stochastic.
Since the asymmetric, doubly stochastic matrix A can be written as the product of a sequence
of doubly stochastic matrices, such a factorization is called the sequential doubly stochastic (SDS)
factorization of J .

Theorem 3 (Sequential doubly stochastic (SDS) factorizations of J). Let A ∈ HBn be the DSHB
factor of J and {Ã(k)}τk=1 the associated scaled HB sequence, constructed via Algorithm 2. For all
k ∈ [τ − 1], define

T (k) :=

[
Ã

(k)
11 Ã

(k)
12(

Ã
(k)
12

)T mk
mk−1

Imk

]
∈ Rmk−1×mk−1 , (21)

with the convention m0 := n, and T (τ) := Ã(τ) ≡ Inτ . The augmented matrices {T̂ (k)}τk=1 ⊂ Rn×n

are defined as
T̂ (k) = In1 ⊕ In2 ⊕ · · · ⊕ Ink−1

⊕ T (k), k ∈ [τ ].

Then, the matrices {T (k)}τk=1 (and {T̂ (k)}τk=1) are all symmetric, doubly stochastic, and the matrix
J = 1

n1n1
T
n can be factored as

J = J0ALJ0 = J0ARJ0, (22)

where

AL := T̂ (1)T̂ (2) · · · T̂ (τ) (23a)

= T (1) · (In1 ⊕ (T (2) · (In2 ⊕ · · · (T (τ−1) · (Inτ ⊕ T (τ)))))),

AR := T̂ (τ)T̂ (τ−1) · · · T̂ (1) (23b)

12



= (In1 ⊕ · · · ⊕ (Inτ−1 ⊕ (Inτ ⊕ T (τ)) · T (τ−1)) · T (τ−2)) · · ·T (1). (23c)

In addition, both factors AL and AR are doubly stochastic.

By definition, the matrices {T (k)} have nonzero entries only in three subdiagonals. The first
factorization in (22) is called the left SDS factorization of J , and the second is called the right SDS
factorization.

Proof. Define J0 := J0, m0 := n, and

V (k) := T (k) · (Ink
⊕ (T (k+1) · (Ink+1

⊕ · · · (T (τ−1) · (Inτ ⊕ T (τ))))))

= T (k) · (Ink
⊕ V (k+1)) ∈ Rmk−1×mk−1 , (24)

for all k ∈ [τ − 1], and V (τ) := T (τ) ≡ Inτ . By definition, each matrix V (k) is doubly stochastic,
because T (k) is doubly stochastic.

First, we apply mathematical induction to prove that for k = τ − 1, . . . , 1,

Jk−1V
(k)Jk−1 =

1

mk−1
1mk−1

1T
mk−1

, (25)

The base case k ← τ − 1 holds because

Jτ−2V
(τ−1)Jτ−2 =

[
Jτ−1

Jτ

]
T (τ−1)(Inτ ⊕ T (τ))

[
Jτ−1

Jτ

]
(26a)

=

[
Jτ−1

Jτ

]
T (τ−1)

[
Jτ−1

Jτ

]
(26b)

=

[
Jτ−1

Jτ

][
Ã

(τ−1)
11 Ã

(τ−1)
12(

Ã
(τ−1)
12

)T mτ−1

mτ−2
I

] [
Jτ−1

Jτ

]
(26c)

=

[
Jτ−1Ã

(τ−1)
11 Jτ−1 Jτ−1Ã

(τ−1)
12 Jτ(

Jτ−1Ã
(τ−1)
12 Jτ

)T mτ−1

mτ−2
J2
τ

]

=
1

mτ−2
1mτ−21

T
mτ−2

. (26d)

The first equation (26a) uses Jτ−2 = Jτ−1 ⊕ Jτ−1 = Jτ−1 ⊕ Jτ . Then, (26b) and (26c) use the
definition T (τ) = Inτ and (21). Finally, (26d) follows from the updates (16) and (17) in Algorithm 2,
as well as the fact J2

τ = Jτ .
Next, suppose the identity (25) holds for k ∈ [τ − 1], and we establish the same identity with

k ← k − 1:

Jk−2T
(k−1)(Ink

⊕ V (k))Jk−2

=

[
Jk−1

Jk−1

] [
Ã

(k−1)
11 Ã

(k−1)
12(

Ã(k−1)
)T mk−1

mk−2
I

][
Ink−1

V (k)

] [
Jk−1

Jk−1

]
(27a)

=

[
Jk−1A

(k−1)
11 Jk−1 Jk−1A

(k−1)
12 V (k)Jk−1(

Jk−1A
(k−1)
12 Jk−1

)T mk−1

mk−2
Jk−1V

(k)Jk−1

]
(27b)

13



=

[
1

mk−2
1nk−1

1T
nk−1

1
mk−2

1nk−1
1T
mk−1

1
mk−2

1mk−1
1T
nk−1

1
mk−2

1mk−1
1T
mk−1

]
(27c)

=
1

mk−2
1mk−2

1T
mk−2

.

In (27a), we use Jk−2 = Jk−1 ⊕ Jk−1, the definition of T (k) in (21), and the definition of direct
sum. After multiplying out all the matrices in (27b), the third equation (27c) follows from the
definition of A(k−1)

11 and A
(k−1)
12 (see (16)–(17)), the definition of V (k) in (24), and the assumption

that identity (25) holds for k ∈ [τ−1]. In particular, the (1, 2)-subblock of (27b) is further simplified
as follows:

Jk−1A
(k−1)
12 V (k)Jk−1

=
1

nk−1
1nk−1

(
1T
nk−1

[
diag

(
nk−1

mk−2
1mk−1

)
0

])
V (k)Jk−1 (28a)

=
1

mk−2
1nk−1

(
1T
mk−1

V (k)
)
Jk−1 (28b)

=
1

mk−2
1nk−1

1T
mk−1

Jk−1 (28c)

=
1

mk−2
1nk−1

1T
mk−1

. (28d)

In (28a), we use the definition of Ã(k−1)
12 in (17), and (28b) writes out 1T

nk−1
Ã

(k−1)
12 =

nk−1

mk−2
1T
mk−1

.
Then, (28c) and (28d) use the doubly stochastic property of V (k) and Jk−1, respectively.

Therefore, the induction hypothesis is proved, and (25) holds for all k ∈ [τ−1]. In particular, (25)
with k ← 1 gives the left SDS factorization:

J0ALJ0 = J0V
(1)J0 =

1

m0
1m01

T
m0

= J.

The first equation uses the convention J0 = J0 and the relation AL = T (1)(In1 ⊕ V (2)) = V (1). The
second equation applies (25) with k = 1, and the last one follows from the convention m0 = n.
Then, the right SDS factorization follows directly from the fact that AR = AT

L and thus

J = (J0ALJ0)
T = J0A

T
LJ0 = J0ARJ0.

Finally, the doubly stochastic property of AL (and AR) follows from that of {T (k)} and the fact
that the product of doubly stochastic matrices is still doubly stochastic.

In the context of decentralized optimization, if communication is modeled by the T -factors,
then at each round of communication, each agent only needs to communicate with at most one
neighbor (as dmax(T

(k)) = 2 for all k ∈ [τ−1]). Such a property is called “one-peer” in decentralized
optimization and holds for one-peer hyper-cubes [8] and one-peer exponential graphs [13].

We also note that the matrices {T (k)} represent the base-(p+ 1) graphs introduced in [9]. Yet,
the original work [9] fails to provide an explicit matrix representation for the base-(p+1) graphs and
does not prove that the weight matrices of their proposed base-(p+1) graphs can be used to factorize
the J matrix. Moreover, as explained in Section 2, the construction of all the matrices (AL, AR,
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{T (k)}, and {Ã(k)}) does not necessarily rely on the base-p representation of the integer n ∈ N≥2,
and only needs a decomposition n =

∑τ
k=1 nk with nk ≥ mk =

∑τ
i=k+1 ni for all k ∈ [τ −1]. So, the

original name “base-(p+ 1)” does not fully reveal the flexibility of the sequential doubly stochastic
factorization proposed in this paper.

The following corollary presents the basic properties of the two SDS factors and the T -factors.

Corollary 4. The total number of nonzeros in the matrix T (k) is nnz(T (k)) = nk + 2
∑τ

i=k+1 ni,
for k ∈ [τ ], and the largest node degree is dmax(T

(k)) = 2. In addition,

nnz(AL) = nnz(AR) =

τ∑
k=1

(2k − 1)nk, dmax(AL) = τ, dmax(AR) = 2τ−1.

Proof. The total number of nonzeros in the matrix T (k) and the largest node degree dmax(T
(k)) hold

from the definition (21).
It follows from the definition of V (k) (24) that

nnz(V (k)) = nk +mk + 2nnz(V (k+1)), for all k ∈ [τ − 1],

and nnz(V (τ)) = nτ . Then, recursion over k yields

nnz(AL) = nnz(AR) = nnz(V (1)) = n1 +m1 + 2nnz(V (2))

= n1 +m1 + 2(n2 +m2) + 4nnz(V (3))

...

=
τ−1∑
k=1

2k−1(nk +mk) + 2τ−1nnz(V (τ))

=
τ−1∑
k=1

2k−1(nk +mk) + 2τ−1nτ

=
τ∑

k=1

2k−1nk +
τ−1∑
k=1

2k−1mτ

=
τ∑

k=1

2k−1nk +
τ−1∑
k=1

2k−1
τ∑

i=k+1

ni

=
τ∑

k=1

2k−1nk +
τ∑

k=2

(2k−1 − 1)nk

=
τ∑

k=1

(2k − 1)nk.

Similarly, the largest node degree of AL (and AR) can be calculated as

dmax(AL) = dmax(V
(1)) = dmax(V

(2)) + 1 = · · · = dmax(V
(τ)) + τ − 1 = τ,

dmax(AR) = dmax((V
(1))T) = 2dmax(V

(2)) = · · · = 2τ−1dmax(V
(τ)) = 2τ−1.
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6 Application in decentralized average consensus and optimization

In this section, we show how the presented factorizations of the form (2) can be used in decentralized
averaging (in Section 6.1) and then describe extensions to decentralized optimization (in Section 6.2).

6.1 Decentralized average consensus

We first formulate the decentralized average consensus problem as follows. In a group of n agents,
each one holds a piece of information, denoted by x

(0)
i ∈ Rd, and the entire group aims to compute

the average x := 1
n

∑n
i=1 x

(0)
i via communication. The communication (or connection) between

agents is modeled by a sequence of (undirected) graphs (or topologies) G(k) = (V,W (k), E(k)), where
V = {1, . . . , n} is the vertex set representing agents and each E(k) ⊆ V × V is the set of edges
(or connections). It is assumed that the set of agents remains static while the set of edges can be
time-varying. The entry w

(k)
ij ∈ R≥0 in the mixing matrix W (k) applies a weighting factor to the

information exchanged between agent j and agent i. If w(k)
ij = 0, it means agent i is not a neighbor

of agent j in G(k); i.e., (i, j) /∈ E(k). The state of agent i (or the information held by agent i) at
iteration k is designated as x

(k)
i and evolves according to the following recursion: for k ∈ N,

x
(k+1)
i =

∑
j : (i,j)∈E(k)

w
(k)
ij x

(k)
j , for all i ∈ [n].

the above recursion can be written more compactly as

X(k+1) = W (k)X(k), where X(k) =
[
x
(k)
1 x

(k)
2 · · · x

(k)
n

]T
∈ Rn×d. (29)

We say average consensus is achieved if either of the following conditions is satisfied.

1. The limit of each x
(k)
i is x:

lim
k→∞

x
(k)
i = x, for all i ∈ [n].

2. There exists k ∈ N such that X(k) = x1T and X(k) = x1T for all k ∈ N≥k.

In modern application scenarios involving GPUs and high-performance computing (HPC) re-
sources, we can design and alter the communication topology in the decentralized averaging process.
In this case, sparse factorization of J helps design topologies with cheap communication cost per
iteration and achieve consensus within a finite number of iterations (29). To see this, consider a
set of sparse matrices {W (i)}qi=1 that satisfies J = W (q) · · ·W (2)W (1). When the associated graph
sequence {G(i)}qi=1 is used as the (time-varying) topologies for decentralized averaging, the itera-
tion (29) yields

X(q) = W (q)W (q−1) · · ·W (2)W (1)X(0) = 1
n11

TX(0) = 1xT.

Therefore, unlike classical results where consensus is achieved only asymptotically, finite-time con-
sensus (i.e., consensus in exactly q iterations) in decentralized averaging is achieved by exploiting
sparse factorization of J .

To this end, the proposed HB and SDS factorizations of J can be used to construct sparse graph
sequences with the desirable finite-time consensus property for arbitrary number of agents n ∈ N≥2.
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Matrices in phase 2 ARHB ADSHB AL AR T -factors

Num. of nonzeros n+ τ(τ − 1)
∑τ

k=1 knk
∑τ

k=1(2
k − 1)nk

∑τ
k=1(2

k − 1)nk nk + 2
∑τ

i=k+1 ni

Largest node degree dmax τ τ τ 2τ−1 2
Num. of iter. in Phase 2 1 1 1 1 τ − 1

Table 1: Trade-offs between the communication cost (modeled by the largest node degree dmax) and
the number of iterations in phase 2.

This is in contrast to most previous work, which has requirements on the matrix order n (e.g.,
n = pτ for some (p, τ) ∈ N≥2 × N≥1). Below, we describe in detail how to exploit the factorization
J = J0AJ0 to construct graph sequences {W (i)} with finite-time consensus, and then discuss two
additional advantages of the proposed HB and SDS factorizations.

• Phase 1. The communication network is constructed via a sparse factorization of J0 =
J1 ⊕ · · · ⊕ Jτ . For example, each smaller matrix Jj ∈ Rnj×nj can be decomposed as product
of p-peer hyper-cuboids [7]. Then, each mixing matrix in Phase 1 is a direct sum of several
p-peer hyper-cuboids (and identity matrices).

• Phase 2. This phase corresponds to the A matrix in (2), which can be the RHB factor,
the DSHB factor, the (left or right) SDS factor, or even a sequence of T -factors. A detailed
comparison between these choices is discussed in the next paragraph and presented in Table 1.

• Phase 3. It corresponds to a sparse factorization of J0, and can be the same as Phase 1.

In addition to the ability to handle an arbitrary number of agents, the proposed factorizations
(RHB, DSHB, SDS) provide more flexibility to balance the communication costs and the number
of communication rounds toward consensus. Recall that the communication cost involved in the
decentralized averaging iteration (29) is related to the total number of nonzeros and the largest
node degree in the communication graph. Thus, using sparser mixing matrices would reduce com-
munication costs but likely increase the total number of averaging iterations toward consensus. For
example, using the left (or right) SDS factor AL (or AR) completes Phase 2 in one iteration, while
using the “one-peer” T -factors in (21) results in τ − 1 iterations in Phase 2. Such a trade-off in the
choice of Phase-2 matrices is summarized in Table 1.

Moreover, the proposed form of factorization (2) can resolve a practical concern omitted by
classical settings of decentralized averaging (and optimization). It is typically assumed that the
distance between agents is equidistant and that each agent is indistinguishable from another. In
practice, however, it may not be the case. Consider the scenario where agents are HPC resources.
Agents A and B may be allocated on the same physical machine while agent C is on another
physical machine. Consequently, the communication cost between agents A and B is cheaper than
that between agents A and C. It is natural to model the network as several sub-networks where
each sub-network is a cluster of relatively “close” agents. Such a structure is easily exploited by
factorization J = J0AJ0. Communication in phases 1 and 3 is all intra-cluster and can be modeled
by different sparse factorizations of Jk, k ∈ [τ ]. The more expensive inter-cluster communication
only happens in Phase 2 and is modeled by the sparse matrix A, which can be the RHB factor,
the DSHB factor, the SDS factors (AL or AR), or a sequence of T -factors in (21). The proposed
factorization form (2) promotes cheap, intra-cluster communications and limits the more expensive,
inter-cluster ones.
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6.2 Decentralized optimization

Besides decentralized averaging, sparse factorization of J is also useful in decentralized optimization.
In decentralized optimization, agents collaborate to solve the following optimization problem

minimize f(x) :=
1

n

n∑
i=1

fi(x), (30)

where the optimization variable is x ∈ Rd, and each component function fi : Rd → R is continuously
differentiable and potentially nonconvex. Each agent i ∈ V only has access to one component
function fi, and agents communicate with each other via (time-varying) topologies {G(k)}. It can
be shown that the decentralized average consensus problem is a special case of the optimization
Problem (30) with fi(x) =

1
2∥x− x

(0)
i ∥22.

In the context of decentralized optimization, a sparse factorization of J offers sequences of
graphs that satisfy the finite-time consensus property, and incorporating such graph sequences in
decentralized optimization algorithms could significantly reduce the per-iteration communication
cost in the algorithm while achieving a comparable convergence rate (compared with decentralized
algorithms using traditional communication protocols) [7,13]. Also note that most existing analyses
for decentralized optimization algorithms need the assumption that the weight (mixing) matrices
{W (k)} are doubly stochastic, which is satisfied by the DSHB factor and the T -factor (21) in the
SDS factorization. So both the DSHB factorization (in Section 4) and the SDS factorization (in
Section 5) are helpful in decentralized optimization, while the RHB factorization (in Section 3) is
not suitable in this scenario.

7 Conclusion

In this paper, we study the sparse factorization J = J0AJ0, where J = 1
n1n1

T
n is the (scaled) all-ones

matrix and J0 = J1 ⊕ · · · ⊕ Jτ is the direct sum of several smaller all-ones matrices. We introduce
the hierarchically banded structure of a symmetric matrix, based on which we present two types
of hierarchically banded factorization of J : the reduced hierarchically banded (RHB) factorization
and the doubly stochastic hierarchically banded (DSHB) factorization. Moreover, inspired by the
DSHB factorization, we propose the sequential doubly stochastic (SDS) factorization which further
factorizes the matrix A as the product of a sequence of symmetric, doubly stochastic matrices. We
then discuss the usefulness of the proposed factorizations in the decentralized average consensus
problem and decentralized optimization. The presented three types of sparse factorization offer
much flexibility in handling the trade-off between the per-iteration communication cost and the
total number of communication rounds in decentralized averaging (and optimization).

Finally, recall that the partition n =
∑τ

k=1 nk is assumed to be given and fixed throughout the
paper. Further investigation is needed in the design of this partition to fully leverage the power of
the proposed sparse factorizations in decentralized optimization.
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