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Abstract

We present an algorithm for computing the minimum-rank positive semidefinite completion
of a sparse matrix with a chordal sparsity pattern. This problem is tractable, in contrast to
the minimum-rank positive semidefinite completion problem for general sparsity patterns. We
also present a similar algorithm for the Euclidean distance matrix completion with minimum
embedding dimension. The two algorithms use efficient recursions over a clique tree associated
with the chordal sparsity pattern. As an application, we use the minimum-rank completion
method as a rounding technique to convert the solution of a sparse semidefinite optimization
problem with non-unique solutions to an optimal solution of lower rank. In experiments with
semidefinite relaxations of optimal power flow problems, the minimum-rank completion often
results in solutions of lower rank than the solutions computed by interior-point solvers.

1 Introduction

The theory of symmetric positive semidefinite and Euclidean distance matrix completions of ma-
trices with partial patterns characterized by chordal graphs was developed in the 1980s and 1990s,
with the celebrated 1984 paper by Grone, Johnson, Sá, and Wolkowicz [25] as one of the key con-
tributions. Let G = (V,E) be an undirected graph, where V = {1, 2, . . . , n} is the set of vertices
and E the set of edges. In this paper, G will represent the sparsity pattern of matrices in Sn
(the symmetric n × n matrices). The set of symmetric n × n matrices with sparsity pattern E is
defined as

SnE = {X ∈ Sn | Xij = Xji = 0 if i ̸= j and {i, j} /∈ E}. (1)

Absence of an edge {i, j} in the graph indicates a zero in positions (i, j) and (j, i). The projection
of a matrix X ∈ Sn on SnE is denoted by ΠE(X). This is the matrix in SnE with entries

(ΠE(X))ij =


Xij {i, j} ∈ E
Xii i = 1, . . . , n
0 otherwise.
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With this notation, the positive semidefinite (PSD) matrix completion problem is to find a matrix
X ∈ Sn that satisfies

X ∈ Sn+, ΠE(X) = A, (2)

where A ∈ SnE is given and Sn+ denotes the set of positive semidefinite matrices in Sn. Clearly, a
necessary condition for existence of a solution is that

Aγγ ∈ S|γ|+ for all maximal cliques γ. (3)

The cliques are the subsets of V that induce complete subgraphs and correspond to dense principal
submatrices of matrices in SnE . Therefore if ΠE(X) = A then Xγγ = Aγγ for every clique γ,
and these matrices must be positive semidefinite if X is positive semidefinite. If the graph G is
chordal, i.e., every cycle of length greater than three has a chord, then the necessary condition (3)
is also sufficient for existence of a positive semidefinite completion [25, Theorem 7]. If the graph is
not chordal, there exist matrices A ∈ SnE that satisfy (3), but do not have a positive semidefinite
completion [25, Theorem 7].

A similar result holds for the Euclidean distance matrix completion problem. A matrix X ∈ Sn
is a Euclidean distance matrix (EDM) if its entries can be expressed as squared pairwise Euclidean
distances of a set of points, i.e., there exist vectors y1, . . . , yn such that

Xij = ∥yi − yj∥2, i, j = 1, . . . , n, (4)

where ∥ · ∥ is the Euclidean norm. The dimension of the vectors yi is arbitrary. We denote the set
of n× n EDMs by Dn. The Euclidean distance matrix completion problem is to find X ∈ Sn that
satisfies

X ∈ Dn, ΠE(X) = A, (5)

where A ∈ SnE is given. A necessary condition for existence of a solution is that

Aγγ ∈ D|γ| for all maximal cliques γ. (6)

For chordal graphs, this necessary condition is again sufficient [9, Theorem 3.3]. If the graph is not
chordal, matrices A ∈ SnE exist that satisfy (6) but do not have an EDM completion [9, p.651]. We
refer the interested reader to [2,10,32,35,37,38] for surveys on the positive semidefinite and EDM
completion problems, the connections between them, and their many applications.

In this paper, we consider the problem of finding a solution of (2) of minimum rank, and the
problem of finding a solution of (5) of minimum embedding dimension, where embedding dimension
refers to the dimension of the vectors yi in (4) (the embedding dimension is the rank of the projection
ofX on the complement of the all-ones vector; see Section 4 and [55, §11.3]). These criteria add non-
convex objectives to the convex constraints (2) and (5), and lead to optimization problems that are
difficult to solve in general. For chordal patterns, however, they are very tractable. The minimum
rank of any PSD completion of a matrix A that satisfies (3) is given by maxγ rank(Aγγ), where
the maximum is over all maximal cliques [18, Theorem 1.3]. Similarly, the minimum dimension of
any EDM completion of a matrix A that satisfies (6) is the maximum of the dimensions of Aγγ

over all maximal cliques [9, Theorem 3.3]. The proofs of these theorems in [9, 18] are constructive
and explain how to find the desired completions one matrix entry at a time. In Sections 3 and 4,
we present different and more efficient algorithms that use iterations over a clique tree associated
with the chordal graph. The iterations and data structures are similar to the algorithms discussed
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in [5,55] for several closely related problems, including maximum-determinant positive semidefinite
completion, and computing gradients and directional second derivatives of logarithmic barriers for
cones of sparse positive semidefinite matrices and their dual cones. The algorithms are variants of
supernodal versions of the multifrontal algorithm for sparse Cholesky factorization.

This work is motivated by applications in semidefinite and Euclidean distance matrix optimiza-
tion, i.e., matrix optimization problems that include constraints of the form X ∈ Sn+ or X ∈ Dn.
The most important example is the semidefinite programming problem (SDP)

minimize tr(CX)
subject to tr(AkX) = b, k = 1, . . . ,m

X ∈ Sn+.
(7)

The variableX in this problem and the coefficients C,A1, . . . , Am are symmetric matrices of order n.
In semidefinite and EDM optimization problems it is very common that, except for the con-

straints X ∈ Sn+ or X ∈ Dn, the constraints and the objective function depend on a small subset of
the entries of the matrix variable. In the SDP (7), for example, this happens when C,A1, . . . , Am

are sparse. Suppose C,A1, . . . , Am ∈ SnE . The sparsity pattern E can be the common (or aggregate)
sparsity pattern, i.e., the union of the sparsity patterns of C,A1, . . . , Am, or an extension of the
common sparsity pattern. Since C,A1, . . . , Am ∈ SnE , the inner product in the objective function

and the constraints of (7) do not depend on the variables Xij with i ̸= j, {i, j} ̸∈ E. If X̃ is

feasible in (7), then any other positive semidefinite matrix X that satisfies ΠE(X) = ΠE(X̃) is also
feasible, with the same value tr(CX) = tr(CX̃) of the objective function. This property has useful
implications for optimization algorithms.

First, suppose the optimal solution of the matrix optimization problem is not unique. Let X⋆ be
an optimal solution returned by an algorithm, for example, one of the general-purpose interior-point
solvers for solving (7). In many applications, for example, semidefinite relaxations of combinatorial
or nonconvex polynomial optimization problems, one is most interested in a low-rank solution (if
possible, the minimum-rank solution) of (7). However, interior-point algorithms that follow the
central path will return a solution close to the limit of the central path, and this is unlikely to be
the minimum-rank optimal solution. The minimum-rank completions presented in Section 3 can
be used to replace X⋆ with an optimal solution of lower rank. We first find a chordal extension E
of the common sparsity pattern of the coefficient matrices, and then calculate the minimum-rank
completion of ΠE(X

⋆). Note that this is not necessarily the minimum-rank solution of the SDP,
since the entries of ΠE(X

⋆) for X⋆ in the set of optimal solutions may not be unique. In Section 5
we evaluate this rank-reduction technique on a set of SDP relaxations of the AC optimal power
flow problem, and observe that it often results in a substantial reduction of the rank. Similarly, in
matrix optimization problems involving EDM constraints X ∈ Dn, one can replace the solution X⋆

computed by any algorithm by the minimum-dimension completion of ΠE(X
⋆), where E includes

the positions of the matrix entries Xij that appear in the other constraints and the objective.
A second application is the class of SDP algorithms based on positive semidefinite completion

techniques. These algorithms exploit the sparsity in (7) by computing only ΠE(X) where E is a
chordal extension of the common sparsity pattern of the coefficient matrices. In other words, they
return the solution of the conic linear programming problem

minimize tr(CX)
subject to tr(AkX) = b, k = 1, . . . ,m

X ∈ K,
(8)
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where K = ΠE(Sn+) is the convex cone of matrices in SnE that have a positive semidefinite com-
pletion. The variable X in (8) is a matrix in SnE , and this can be a much lower-dimensional space
than Sn. Algorithms for (8) use classical results from the theory of positive semidefinite completion
to handle the constraint X ∈ K. The idea was first proposed in [20], and has been applied in
interior-point algorithms, decomposition methods, and first-order methods [4,21,31,55–58]. Meth-
ods that solve (7) via (8) must be followed by a completion step to find an optimal solution of (7).
The most appropriate choice is the completion of minimum rank, because in most applications one
is interested in low-rank solutions. Moreover, since the optimal solution of (8) is on the boundary of
the cone K, the simpler and more widely known maximum-determinant positive definite completion
is not defined at the optimum of (8). Similar ideas apply to EDM optimization.

Contributions We first present an algorithm for constructing the minimum-rank PSD comple-
tion of a matrix A ∈ Sn with a chordal sparsity pattern E. The expression for the minimum rank
is given in [18, Theorem 1.3], and the presented algorithm serves as a constructive proof for this
result. The algorithm exploits the structure of the clique tree associated with the chordal sparsity
pattern.

As a second contribution, we use the algorithm as a posterior rounding step for SDP solutions,
and test this technique on semidefinite relaxations of a set of optimal power flow problems. On
most problems, the rounding step is observed to reduce the rank of the computed solutions. In some
cases a solution of rank one is obtained, which corresponds to a global solution of the underlying
nonconvex quadratic optimization problem.

The third contribution is a new algorithm for the minimum-dimension EDM completion algo-
rithm with chordal sparsity. The algorithm is obtained by adapting the key ideas in the minimum-
rank PSD completion method and uses a similar recursion over the clique tree.

Outline The rest of the paper is organized as follows. In Section 2 we review basic concepts in
chordal sparsity and graph theory. The minimum-rank PSD completion algorithm is described in
Section 3. Section 4 presents the minimum-dimension EDM completion algorithm. In Section 5, the
proposed algorithm is applied as a posterior rounding process to the sparse semidefinite relaxations
of the optimal power flow problem, and numerical results are also included.

2 Chordal sparsity patterns

In this section we review some basic properties of symmetric chordal sparsity patterns, and define
the notation and assumptions that will be used throughout the paper. A more detailed discussion
and proofs can be found in the surveys [13,55,57].

We assume the graph G = (V,E) represents a symmetric n × n sparsity pattern, as defined
in (1). The vertex set V = {1, 2, . . . , n} contains the row and column indices. The edge set E
indicates the positions of the off-diagonal nonzeros. We assume that the graph G = (V,E) is
chordal, i.e., every cycle of length at least four has a chord. It is a fundamental result that a graph
is chordal if and only if it has a perfect elimination ordering [22]. Without loss of generality, we
assume that the numerical order 1, . . . , n is a perfect elimination ordering, i.e.,

i > j > k, {i, k} ∈ E, {j, k} ∈ E =⇒ {i, j} ∈ E.

For simplicity we also assume that the graph is connected.
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Figure 1: Left. The (symmetric) adjacency matrix of a connected, undirected, chordal graph G,
with perfect elimination ordering 1, . . . , n. (For simplicity we only show the lower triangular part
of the adjacency matrix.) A bullet in the (i, j) entry means the nodes i and j are adjacent. The
dashed lines separate the supernodes. Right. A corresponding clique tree. Every double-row box
in the clique tree is a clique γi. The red index is the clique representative. The bottom row in each
rectangle is the supernode (clique residual) νi and the top row is the separator αi.

A maximal complete subgraph of a graph is called a (maximal) clique. The vertex of a clique
with the smallest index is called its representative vertex. The clique with representative vertex i
is denoted by γi, and the set of representative vertices by V c ⊂ V .

We associate with the graph a clique tree. The nodes in the clique tree are the cliques, indexed by
their representative vertices V c. If the clique γi is not the root of the clique tree, the representative
vertex of its parent in the clique tree is denoted by p(i). A fundamental property of chordal graphs
is that there exists a clique tree with the induced subtree property: for each k ∈ V , the cliques that
contain the vertex k form a subtree of the clique tree [16,24]. Given a clique tree with the induced
subtree property, one can partition each clique γi in two sets νi and αi defined as follows. If γi is
the root of the clique tree, αi = ∅ and νi = γi. Otherwise,

αi = γi ∩ γp(i), νi = γi \ αi.

The sets νi are called the (maximal) supernodes or clique residuals, and the sets αi are called the
clique separators. It follows from the induced subtree property that the supernodes νi, for i ∈ V c,
partition V . If k ∈ νj , then the clique γj is the root of the induced subtree for vertex k. The other
cliques γi in the induced subtree contain k in the clique separators αi.

We assume the elements in γi, αi, νi are ordered in ascending order. By a suitable ordering of
the vertices and choice of clique tree we can further assume the following properties.

• The representative vertices of the cliques in the clique tree are ordered topologically: i < p(i)
if i ̸= maxV c, and i = maxV c is the representative vertex of the root of the clique tree.

• The vertices in νi are ordered consecutively: νi = {i, i+ 1, . . . , i+ |νi| − 1}.

Figure 1 shows an example.
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3 Minimum-rank chordal PSD completion

3.1 PSD completion

We assume E is a chordal sparsity pattern and use the notation in Section 2. A classical result in
matrix algebra says that a matrix A ∈ SnE has a positive semidefinite completion if and only if

Aγiγi ∈ S|γi|+ , i ∈ V c; (9)

see [25]. Dancis [18, Theorem 1.5] has shown that every matrix A ∈ ΠE(Sn+) has a positive
semidefinite completion with rank equal to

r = max
i∈V c

rank (Aγiγi). (10)

In particular, A has a positive semidefinite completion with rank less than or equal to

rmax = max
i∈V c

|γi|, (11)

the size of the largest clique in the sparsity pattern.
In Sections 3.2 and 3.3, we describe an algorithm to compute a full-rank matrix Y of size n× r

with the property ΠE(Y Y T ) = A. We will use the following well-known result from linear algebra
(see, for example, [50, Lemma 3], [17, Lemma 2.1], [34, Proposition 3.2]).

Lemma 1. If A and B are matrices of the same size that satisfy AAT = BBT , then A = BQ for
some orthogonal matrix Q.

Proof. Suppose A,B ∈ Rn×m and AAT = BBT . The relation AAT = BBT implies that A and B
have the same rank, singular values, and left singular vectors. Therefore they have singular value
decompositions of the form

A = PΣV T , B = PΣUT (12)

where P ∈ Rn×n, Σ ∈ Rn×m, and V,U ∈ Rm×m, with P,U, V orthogonal. Hence A = BQ for
Q = UV T .

The matrix Q = UV T constructed in the proof is the orthogonal factor in the polar decom-
position BTA = QH, where Q is orthogonal and H = V SV T with S = ΣTΣ symmetric posi-
tive semidefinite. For general n × m matrices A,B, this matrix is known to be the solution of
the orthogonal Procrustes problem, i.e., it minimizes ∥A − BQ∥F over the orthogonal matrices;
see [27], [28, §7.4.8]. The matrices U, V can be computed from a singular value decomposition
BTA = USV T , preferably via specialized algorithms that compute this SVD without forming the
product BTA [14, 26].

3.2 Two overlapping diagonal blocks

The key part of the algorithm is first explained via an illustrative example with a sparsity pattern
consisting of two overlapping diagonal blocks. The next section (Section 3.3) covers the extension
to general chordal sparsity patterns, using the clique tree data structure.
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Consider the completion of a symmetric matrix with two overlapping diagonal blocks, parti-
tioned as

A =

A11 AT
21 0

A21 A22 AT
32

0 A32 A33

 ,

with A11, A22, A33 of size n1 × n1, n2 × n2, and n3 × n3, respectively. Here V c = {1, n1 + 1}, the
two cliques are

γ1 = {1, . . . , n1 + n2}, γn1+1 = {n1 + 1, . . . , n1 + n2 + n3},

and the corresponding supernodes and separators are

ν1 = {1, . . . , n1}, α1 = {n1 + 1, . . . , n1 + n2}, νn1+1 = γn1+1, αn1+1 = {}.

Assume A ∈ ΠE(Sn+), and define

H1 =

[
A11 AT

21

A21 A22

]
, H2 =

[
A22 AT

32

A32 A33

]
.

From (9) and (10), the matricesH1, H2 are positive semidefinite and the minimum rank of a positive
semidefinite completion of A is given by

r = max {rank(H1), rank(H2)}.

A matrix Y of size n× r that satisfies ΠE(Y Y T ) = A can be constructed as follows.
By definition of r, the matrices H1 and H2 can be decomposed as

H1 =

[
A11 AT

21

A21 A22

]
=

[
U1

V1

] [
U1

V1

]T
, H2 =

[
A22 AT

32

A32 A33

]
=

[
U2

V2

] [
U2

V2

]T
,

where U1, U2, V1, V2 have r columns. The submatrix A22 satisfies A22 = V1V
T
1 = U2U

T
2 . From

Lemma 1, the matrices V1 and U2 are related as U2 = V1Q for an r×r orthogonal matrix Q. Define

Y =

U1Q
U2

V2

 =

U1Q
V1Q
V2

 .

By construction, Y has rank r. The identity ΠE(Y Y T ) = A can be verified as

X = Y Y T =

 U1U
T
1 U1V

T
1 U1QV T

2

V1U
T
1 V1V

T
1 U2V

T
2

V2Q
TUT

1 V2U
T
2 V2V

T
2

 =

 A11 AT
21 U1QV T

2

A21 A22 AT
32

V2Q
TUT

1 A32 A33

 .

3.3 Minimum-rank PSD completion algorithm

The technique in Section 3.2 can be extended to handle general chordal sparsity patterns, by
traversing the clique tree in an inverse topological order (starting at the root and visiting each
clique before its children in the clique tree). The algorithm is summarized in Algorithm 1. For a
matrix Y ∈ Rn×m and an index set β ⊂ {1, . . . , n}, we use Yβ to denote the submatrix of Y with
rows indexed by β.
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Algorithm 1. Minimum-rank chordal PSD completion.

Input. A matrix A ∈ ΠE(Sn+), where G = (V,E) is a chordal sparsity pattern, and a
clique tree for G.

Output. A matrix Y ∈ Rn×r with r equal to (10) and ΠE(Y Y T ) = A.

Algorithm.

• Compute r = maxi∈V c rank(Aγiγi) and, for each j ∈ V c, a factorization

Aγjγj =

[
Aνjνj Aνjαj

Aαjνj Aαjαj

]
=

[
Uj

Vj

] [
Uj

Vj

]T
,

with Uj of size |νj | × r and Vj of size |αj | × r.

• Enumerate the clique representatives j ∈ V c in an inverse topological order.
If j is the root of the clique tree, set Yνj := Uj . Otherwise, compute an r × r
orthogonal matrix Q such that Yαj = VjQ and set Yνj := UjQ.

The two parts of the algorithm can be combined. We can start with r = 0 and increase it to
max {rank(Aγjγj ), r} in step j of the recursion. When r is increased, we add zero columns to the
blocks of Y that have already been computed. Alternatively, we can set r to the upper bound (11),
and determine the rank of the matrix Y after finishing the algorithm.

To show correctness of the algorithm, we verify that Y Y T is a completion of A, i.e.,

YγjY
T
γj = Aγjγj (13)

for all j ∈ V c. Recall that the supernodes νj partition the index set V = {1, 2, . . . , n}, and that
each set αj is a subset of the union of the sets νi for the ancestors γi of clique γj in the clique tree.
At each step in the recursion over the tree, we add a new block Yνj . The blocks Yνi for the cliques γi
that precede γj in the inverse topological ordering are left unchanged. It is therefore sufficient to
verify that after j ∈ V c has been processed, the identity (13) holds, i.e.,[

Yνj
Yαj

] [
Yνj
Yαj

]T
=

[
Aνjνj Aνjαj

Aαjνj Aαjαj

]
.

If j is the root representative, then

YνjY
T
νj = UjU

T
j = Aνjνj = Aγjγj .

Otherwise, suppose YγiY
T
γi = Aγiγi for all cliques γi that are ancestors of clique γj in the clique

tree. Then
Aαjαj = YαjY

T
αj

= VjV
T
j (14)

because αj is a subset of the parent clique γp(j). By Lemma 1 there exists an orthogonal matrix Q
such that Yαj = VjQ. By choosing Yνj = UjQ we obtain[

Yνj
Yαj

] [
Yνj
Yαj

]T
=

[
UjQ
Yαj

] [
UjQ
Yαj

]T
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=

[
UjU

T
j UjQY T

αj

YαjQ
TUT

j YαjY
T
αj

]

=

[
UjU

T
j UjV

T
j

VjU
T
j VjV

T
j

]
=

[
Aνjνj Aνjαj

Aαjνj Aαjαj

]
.

4 Minimum-dimension chordal EDM completion

4.1 EDM completion

We now turn to the EDM completion problem. As mentioned in Section 1, a symmetric n × n
matrix X is an EDM if there exist vectors y1, . . . , yn such that (4) holds. The condition (4) can be
written in matrix form as

X = diag(Y Y T )1T + 1diag(Y Y T )T − 2Y Y T , (15)

where 1 is the n-vector of ones, Y is the matrix with rows yTi , and the linear operator diag : Sn → Rn

maps a matrix to the vector of its diagonal elements. We refer to the matrix Y as a realization
of X. From (15), X ∈ Dn if and only if there exists a matrix W ∈ Sn+ that satisfies

X = diag(W )1T + 1diag(W )T − 2W.

An equivalent characterization of EDMs is due to Schoenberg [51,52]: X is an EDM if its diagonal
is zero and its projection on the complement of the all-ones vector is negative semidefinite, i.e.,

diag(X) = 0, P TXP ⪯ 0,

where P is a matrix whose columns span the orthogonal complement of 1. We define the dimension
of the EDM X as the rank of its projection on the orthogonal complement of the all-ones vector:

dim(X) = rank(P TXP ).

The following lemma implies that dim(X) is the minimum dimension of any realization Y of X.
The lemma will be exploited in the algorithm in Section 4.2.

Lemma 2. Let µ be an n-vector that satisfies 1Tµ = 1, and suppose X ∈ Dn. A matrix Y ∈ Rn×m

is a realization of X that satisfies µTY = 0 if and only if

Y Y T = −1

2
(I − 1µT )X(I − µ1T ). (16)

Proof. Suppose Y is a realization of X and satisfies µTY = 0. From (15) we obtain

(I − 1µT )X(I − µ1)T = −2Y Y T .

For the other direction, assume Y satisfies (16). Clearly, µTY Y Tµ = 0, so µTY = 0. Also,

diag(Y Y T ) = −1

2
diag(X − 1µTX −Xµ1T + (µTXµ)11T )

9



= Xµ− 1

2
(µTXµ)1,

because diag(X) = 0. Hence

diag(Y Y T )1T + 1diag(Y Y T )T − 2Y Y T

= Xµ1T + 1µTX − (µTXµ)11T + (I − 1µT )X(I − µ1)T

= X.

Therefore Y is a realization of X.

Lemma 2 shows that if we impose the condition µTY = 0, the product Y Y T of the realization Y
is uniquely defined. Hence, from Lemma 1, the realization Y that satisfies µTY = 0 is unique, up
to right multiplication with an orthogonal matrix. The condition µTY = 0 places the origin at a
specified affine combination of the rows of Y .

4.2 Minimum-dimension EDM completion algorithm

We consider the EDM completion problem with chordal sparsity pattern E. Using the same notation
as in the previous sections, the main result on this problem is as follows [9, Theorem 3.3], [10,
Theorem 5.8.5]: a matrix A ∈ SnE has an EDM completion if and only if

Aγiγi ∈ D|γi|, i ∈ V c. (17)

Moreover, there exists a completion with dimension

dim(X) = max
i∈V c

dim(Aγiγi). (18)

The following algorithm computes a completion with this dimension. In the algorithm, the vector
e1 = (1, 0, . . . , 0) is the first unit vector of compatible size.

Algorithm 2. Minimum-dimension chordal EDM completion.

Input. A matrix A ∈ ΠE(Dn), where G = (V,E) is a chordal sparsity pattern, and a
clique tree for G.

Output. A realization Y ∈ Rn×r of an EDM completion of A with r equal to (18).

Algorithm.

• Compute r = maxi∈V c dim(Aγiγi) and, for each clique representative j ∈ V c, a

realization
[
UT
j V T

j

]T
of the EDM[

Aνjνj Aνjαj

Aαjνj Aαjαj

]
(19)

with Uj of size |νj | × r and Vj of size |αj | × r. If j is not the root of the tree, we
choose a realization that satisfies eT1 Vj = 0.
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• Enumerate the clique representatives j ∈ V c in an inverse topological order. If j
is the root, define Yνj = Uj . Otherwise, compute an r × r orthogonal matrix Q
such that (I − 1eT1 )Yαj = VjQ, and define

Yνj = UjQ+ 1eT1 Yαj . (20)

The realization of (19) is computed by factorizing

−1

2
(I − 1µT )

[
Aνjνj Aνjαj

Aαjνj Aαjαj

]
(I − µ1T ) =

[
Uj

Vj

] [
Uj

Vj

]T
,

with µ = e|νj |+1 if j is not the root, and otherwise an arbitrary µ that satisfies 1Tµ = 1.

To show the correctness of the algorithm, we verify that Y Y T is an EDM completion of A. At
step j we modify block Yνj . Since the cliques are enumerated in an inverse topological order, the
block Yαj has already been computed in earlier steps. It is sufficient to show that after j ∈ V c is
visited, the matrix [

Yνj
Yαj

]
is a realization of Aγjγj . The matrices Vj and Yαj are two realizations of Aαjαj , and the first row
of Vj is zero by construction (eT1 Vj = 0). If we translate the rows of Yαj to make the first row zero,
then, from Lemmas 1 and 2, the two realizations must be identical up to a right multiplication with
an orthogonal matrix. Hence there exists an orthogonal Q with

VjQ = (I − 1eT1 )Yαj ,

as needed in (20). The constructed matrix[
Yνj
Yαj

]
=

[
UjQ+ 1eT1 Yαj

Yαj

]
=

[
Uj

Vj

]
Q+ 1eT1 Yαj

is a realization of Aγjγj because, by construction, [UT
j V T

j ]T is a realization of Aγjγj .

5 Posterior rounding for the semidefinite relaxation of OPF

The AC optimal power flow (OPF) problem [48, 54] is to find a cost-optimal operating point of a
power distribution network that consists of a set of power buses and a network of transmission lines.
The general OPF problem is a difficult nonconvex optimization problem. Since its introduction
in 1962 [48], several different formulations have been proposed [29, 46, 47, 49, 59], and recently,
semidefinite relaxation (SDR) techniques for OPF have become an active research area [8,39,40,44].
Semidefinite relaxations provide lower bounds for the optimal value of the OPF problem, and in
some cases, the global optimum [15,39,41]. The computational cost of SDR, however, grows rapidly
with the size of the power system. Thus, solving the SDR of a large-scale OPF problem is often
impractical, mainly due to the large, dense matrix variable in the SDR formulation. To this end, the
sparse structure of the power network has been extensively exploited to reduce the computational
cost of solving the SDR [4,6,12,30,36,43]. These methods solve the SDR as a sparse SDP (7) and
yield a sparse, PSD completable solution.
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We describe in this section a posterior rounding technique to obtain a low-rank solution for
the SDR of the OPF problem. We first solve the semidefinite relaxation of the OPF problem and
obtain a positive semidefinite solution X⋆. Then a minimum-rank PSD completion of ΠE(X

⋆) can
be constructed via Algorithm 1, where E is the chordal sparsity pattern for the OPF problem. The
completed matrix is by construction optimal for the semidefinite relaxation of OPF, and may have
a smaller rank than the SDP solution computed by a general-purpose solver.

The rest of this section is organized as follows. In Section 5.1 we briefly describe the power
flow model and the OPF problem. Section 5.2 reformulates the OPF problem and describes the
semidefinite relaxation. In Section 5.3 we discuss the posterior rounding technique, and Section 5.4
contains results of numerical experiments.

5.1 Power flow model

The power system model consists of a network of power buses (nodes). We denote the set of power
buses by N (with |N | = n), and the set of transmission line (edges) by L ⊂ N ×N , i.e., (i, j) ∈ L
if there is a transmission line from node i to node j. Transmission lines may not be symmetric, and
thus we model the network graph as a directed graph. We denote i ∼ j if (i, j) ∈ L or (j, i) ∈ L.

The optimal power flow problem can be formulated as a nonconvex quadratically constrained
quadratic program (QCQP)

minimize
∑

(i,j)∈L
f(vi, vj) (21a)

subject to p2ij + q2ij ≤ S2
ij , (i, j) ∈ L (21b)

Pmin
i ≤

∑
(i,j)∈L

pij ≤ Pmax
i , i ∈ N (21c)

Qmin
i ≤

∑
(i,j)∈L

qij ≤ Qmax
i , i ∈ N (21d)

V min
i ≤ |vi| ≤ V max

i , i ∈ N , (21e)

pij + ȷ̂qij = vi(v
∗
i − v∗j )y

∗
ij , (i, j) ∈ L (21f)

where the optimization variables are the real and reactive power flows pij , qij over the transmission
line (i, j) ∈ L, and the complex voltage vi at node i. The positive scalars Pmin

i , Pmax
i , Qmin

i , Qmax
i ,

V min
i , V max

i , and Sij are given, yij is the conductivity of (i, j) ∈ L, and ȷ̂ =
√
−1 is the imaginary

unit. The objective function consists of fuel cost functions fg of generator g ∈ G, and can be any
so-called semidefinite representable convex function. Here we model the power loss f as a convex
quadratic function of the form

f(vi, vj) = gij |vi − vj |2 (22)

where gij is the conductance of the transmission line (i, j) ∈ L. Other choices of semidefinite
representable convex functions are also available; see, for example, [11]. The constraints (21b)
are on the capacity of transmission lines, (21c)–(21d) are constraints on real and reactive power
flows, (21e) are voltage magnitude constraints, and (21f) describe the relation between power flows
and voltages and are derived from the admittance–impedance relation.

5.2 Reformulation and semidefinite relaxation

The nonconvexity of (21) is due to the equality constraints (21f) as well as the inequality constraints
|vi| ≥ V min

i . To formulate a tractable convex relaxation for (21), we first introduce the variable
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X = vvH and replace the constraints (21e) and (21f) by

(V min
i )2 ≤ Xii ≤ (V max

i )2, i ∈ N , pij + ȷ̂qij = (Xii −Xij)y
∗
ij , (i, j) ∈ L, rankX = 1.

The first two sets of constraints are now linear inequality and equality constraints, and the only
nonconvex rank constraint can be relaxed to a positive semidefinite cone constraint X ⪰ 0. Thus
we obtain a convex semidefinite relaxation (SDR) for the OPF problem

minimize f̃(X) =
∑

(i,j)∈L
gij(Xii +Xjj − 2Xij)

subject to p2ij + q2ij ≤ S2
ij , (i, j) ∈ L

Pmin
i ≤

∑
(i,j)∈L

pij ≤ Pmax
i , i ∈ N

Qmin
i ≤

∑
(i,j)∈L

qij ≤ Qmax
i , i ∈ N

(V min
i )2 ≤ Xii ≤ (V max

i )2, i ∈ N
pij + ȷ̂qij = (Xii −Xij)y

∗
ij , (i, j) ∈ L

X ⪰ 0.

(23)

The objective function f̃(X) is transformed from (22). The optimal value of (23) provides a lower
bound on that of (21), and if the optimal solution X⋆ satisfies rank(X⋆) = 1, the SDR (22) is exact.
In this case, we can obtain a global optimal solution for (21) by computing a rank-one factorization
X⋆ = uuH . Conditions for exactness have been extensively studied; see, for example, [23, 40,42].

If rank(X⋆) > 1, the optimal solution X⋆ is not feasible for (21) and only provides a lower
bound for the optimal value of the original nonconvex problem (21). But it can still provide an
approximation of optimal powers and voltage magnitudes. A rank-one approximation of X⋆ can
be computed as

X̂ = λ1u1u
H
1 ,

where λ1 is the largest eigenvalue of X⋆, and u1 is the principal eigenvector. If the numerical rank
of X⋆ is not much larger than one and the largest eigenvalue is substantially larger than the others,
then the above heuristic gives a solution close to the ideal outcome and the principal eigenvector
can serve as a good approximation of the optimal complex voltages.

5.3 Posterior rounding

In the SDR (23), the objective and all the constraints are linear in the matrix variable X except
for the positive semidefinite cone constraint. Moreover, all the linear constraints in X, as well as
the objective, involve only the elements Xij with (i, j) ∈ L or (j, i) ∈ L.

These elements form a (symmetric) sparsity pattern E, and without loss of generality, we can
assume E is a chordal sparsity pattern. The resulting SDP can be solved efficiently via a variety
of algorithms [4, 6, 19, 21, 33, 36, 43]. If X⋆ is an optimal solution, any PSD completion of ΠE(X

⋆)
is also optimal. For semidefinite relaxations of OPF, the minimum-rank completion is of special
interest. We denote the minimum-rank PSD completion of ΠE(X

⋆) by X•. If X• has rank one,
i.e., X• = wwH , we can construct from it an optimal solution w of the OPF problem. Even
when rank(X•) > 1, the principal eigenvector u1 of X• can still be used as an approximation of
the globally optimal voltages. Replacing the solution X⋆ computed by any SDP solver with the
minimum-rank PSD completion of ΠE(X

⋆) can therefore be interpreted as a posterior rounding
step to find an optimal solution of lower rank than X⋆.
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Case n = |N | |L| |G|

IEEE-118 118 186 0
IEEE-300 300 409 0
2383wp 2383 2896 92
2736sp 2736 3269 118
2737sp 2737 269 165
2746wop 2746 3307 346
2746wp 2746 3279 352
3012wp 3012 3572 7
3120sp 3120 3693 9
3375wp 3375 3693 25
89pegase 89 210 12
1354pegase 1354 1991 260
2869pegase 2869 4582 510
1888rte 1888 2531 297
1951rte 1951 2596 391
2848rte 2848 3776 547
2868rte 2868 3808 599
6468rte 6468 9000 1295

Table 1: Test cases and problem dimensions.

5.4 Numerical experiments

In this section we evaluate the performance of the posterior rounding technique applied to the
semidefinite relaxation (23) of OPF. The experiments are based on the benchmark problems from
the MATPOWER package [60], and the Python library CHOMPACK [7] for chordal matrix com-
putations and, in particular, its implementation of Algorithm 1.

Table 1 lists the test cases along with relevant problem dimensions. The value n = |N | is the
number of power buses in the network while the value |L| is the number of transmission lines. The
number of generators |G| is listed in the last column of the table. In the cases where the underlying
network is non-chordal, we construct a chordal extension with the AMD reordering [3]. In addition,
following the convention in [6,45,60], we eliminate transmission line flow constraints in (21b) that
are not active at the local optimal solution provided by [60].

For each test case, we solve the SDR (23) using SeDuMi 1.3 with tolerance 10−7 and denote the
optimal solution by X⋆. Although we explicitly build the complex-valued SDR, we cast the problem
as a real-valued problem before passing it to SeDuMi. The minimum-rank PSD completion X•

of ΠE(X
⋆) is then constructed via Algorithm 1. Note that the problems solved by SeDuMi are

real-valued and the computed solution is then transformed back into the complex form. Rank-one
solutions of the complex SDP correspond to rank-two solutions of the equivalent real SDP.

The ratio between the largest and the other eigenvalues is used to compute the numerical rank
of the solution. When we compute the numerical rank of a matrix, the eigenvalues that are below a
certain ratio of the largest one λmax are considered to be zero. In particular, a matrix has numerical
rank one if the ratio between the largest and the second largest eigenvalue is sufficiently large. In
the experiments, we compute the numerical rank of the solutions X⋆ and X• with the tolerance ϵ
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ϵ = 10−4√n ϵ = 10−5√n ϵ = 10−6√n

Case n max. clique rank(X⋆) rank(X•) rank(X⋆) rank(X•) rank(X⋆) rank(X•)

IEEE-118 118 20 1 1 1 1 1 1
IEEE-300 300 17 5 1 5 1 36 1
2383wp 2383 31 13 1 17 1 19 3
2736sp 2736 30 1 1 1 1 14 8
2737sop 2737 29 1 1 43 1 87 9
2746wop 2746 30 1 1 32 1 76 11
2746wp 2746 31 1 1 1 1 268 17
3012wp 3012 32 281 5 346 13 578 17
3120sp 3120 32 445 32 572 32 761 32
3375wp 3375 33 442 19 451 19 518 33
89pegase 89 12 7 1 17 5 19 6
1354pegase 1354 19 97 3 111 7 124 19
2869pegase 2869 29 101 13 181 15 199 19
1888rte 1888 16 197 1 251 1 271 3
1951rte 1951 28 23 1 71 1 135 5
2848rte 2848 35 87 1 133 1 210 3
2868rte 2868 31 133 7 255 16 301 21
6468rte 6468 33 214 7 356 11 456 33

Table 2: Numerical rank of computed SDP solution X⋆ and minimum-rank PSD completion X• of
ΠE(X

⋆) for different tolerances.

equal to 10−4√n, 10−5√n, and 10−6√n. Eigenvalues smaller than ϵλmax are considered to be zero.

Numerical results Table 2 shows the numerical ranks of X⋆ and X• for different tolerances.
Overall, the posterior rounding process via Algorithm 1 provides a solution for SDR with rank
lower than that achieved by general-purpose interior-point solver SeDuMi. In some cases, the
improvement is significant and the completed matrix X• has rank one. On the other hand, the
numerical rank depends on the tolerance we use. For example, in the case 2736sp, the numerical
rank is one when ϵ = 10−5√n and becomes eight when the threshold is tightened.

The difference in numerical rank between the two solutions is illustrated in Figure 2. The figure
plots the eigenvalue ratio λi/λmax of the two PSD matrices X⋆ and X•, in the test case IEEE300.
For the completed matrix X•, eigenvalues λi for i ≥ 2 are small compared to λmax(X

•) while for
the SDR solution X⋆ the eigenvalues decay more slowly.

Table 3 shows the numerical ranks of the matrices X⋆ and X•, computed by three different
solvers, SeDuMi, SDPT3 and MOSEK. Here, we found it helpful to omit inactive line constraints
in SeDuMi and SDPT3, but this process was not necessary with MOSEK. The numerical rank is
calculated in the method mentioned above with ratio tolerance ϵ = 10−5√n. Results are slightly
different for the three solvers, but within a small variation. We can also see that the posterior
rounding process generates favorable low-rank results in all the three solvers, and the ranks of the
completed matrix do not vary too much in different solvers.
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MOSEK 8 SeDuMi v1.3 SDPT3 v4.0

Case n max. clique rank(X⋆) rank(X•) rank(X⋆) rank(X•) rank(X⋆) rank(X•)

IEEE-118 118 20 1 1 1 1 1 1
IEEE-300 300 17 5 1 5 1 5 1
2383wp 2383 31 17 1 17 1 17 1
2736sp 2736 30 1 1 1 1 1 1
2737sop 2737 29 44 1 43 1 43 1
2746wop 2746 30 32 1 32 1 32 1
2746wp 2746 31 1 1 1 1 1 1
3012wp 3012 32 346 13 346 13 337 17
3120sp 3120 32 514 27 572 32 519 27
3375wp 3375 33 451 19 451 19 454 21
89pegase 89 12 19 5 17 5 17 5
1354pegase 1354 19 123 7 111 7 93 8
2869pegase 2869 29 183 14 181 15 167 13
1888rte 1888 16 175 15 251 1 175 15
1951rte 1951 28 71 1 71 1 70 1
2848rte 2848 35 142 1 133 1 133 1
2868rte 2868 31 255 16 255 16 223 13
6468rte 6468 33 356 11 356 11 751 13

Table 3: Numerical rank results with different solvers (ϵ = 10−5√n).
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6 Conclusions

We described algorithms for two matrix completion problems with chordal sparsity patterns: the
minimum-rank positive semidefinite (PSD) completion, and the minimum-dimension Euclidean
distance matrix (EDM) completion. The algorithms use efficient recursions over the clique tree
associated with the chordal sparsity pattern. As an application, we investigated the use of the
minimum-rank PSD completion algorithm as a posterior rounding step for semidefinite programs
(SDPs). If the optimal solution of the SDP is not unique, the rounding step allows us to replace
the computed solution by an optimal solution of lower rank. Numerical experiments with SDP re-
laxations of the optimal power flow (OPF) problem show that the rounding step often substantially
reduces the rank of the solution of the semidefinite relaxation, and thus yields better sub-optimal
solutions and sometimes optimal solutions for the nonconvex OPF problem. It will be of interest
to apply the same techniques in other applications of semidefinite and EDM optimization, where
low rank and low embedding dimension are important. Another topic for further research is the
development of efficient algorithms to find the nearest matrix with a low-rank PSD completion or
low-dimension EDM completion. Some results in this direction can be found in [1].
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