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Abstract

Stochastic sequential quadratic optimization (SQP) methods for solving continuous optimization
problems with nonlinear equality constraints have attracted attention recently, such as for solving large-
scale data-fitting problems subject to nonconvex constraints. However, for a recently proposed subclass
of such methods that is built on the popular stochastic-gradient methodology from the unconstrained
setting, convergence guarantees have been limited to the asymptotic convergence of the expected value of
a stationarity measure to zero. This is in contrast to the unconstrained setting in which almost-sure con-
vergence guarantees (of the gradient of the objective to zero) can be proved for stochastic-gradient-based
methods. In this paper, new almost-sure convergence guarantees for the primal iterates, Lagrange mul-
tipliers, and stationarity measures generated by a stochastic SQP algorithm in this subclass of methods
are proved. It is shown that the error in the Lagrange multipliers can be bounded by the distance of the
primal iterate to a primal stationary point plus the error in the latest stochastic gradient estimate. It is
further shown that, subject to certain assumptions, this latter error can be made to vanish by employing
a running average of the Lagrange multipliers that are computed during the run of the algorithm. The
results of numerical experiments are provided to demonstrate the proved theoretical guarantees.

1 Introduction

In this paper, we study convergence guarantees that can be offered for a stochastic algorithm for solving
continuous optimization problems with nonlinear equality constraints. Such problems arise in a variety of im-
portant areas throughout science and engineering, including optimal control, PDE-constrained optimization,
network optimization, and resource allocation [6, 8, 23, 34], and have recently arisen in new and interesting
modern application areas such as constrained deep neural network training (e.g., physics-informed learning
[15, 22] where one can impose hard constraints rather than merely define the loss function to minimize
residual errors [3]). In certain instances of such problems, the objective function can be defined as an ex-
pectation over a random variable argument. In this context, the useful features of the algorithm that we
study are that it is applicable when only (unbiased) stochastic estimates of the gradient of the objective
function are tractable to obtain during the optimization, while at the same time the algorithm can exploit
exact constraint function and derivative values that are tractable to obtain.

Sequential quadratic optimization (commonly known as SQP) methods are a popular and powerful class
of derivative-based algorithms for solving continuous constrained optimization problems. SQP methods that
are stochastic in nature (due to their use of stochastic gradient estimates in place of true gradients of the
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objective) have been investigated recently for solving problems of the aforementioned type, namely, ones for
which the objective is defined by an expectation. For one subclass of stochastic SQP methods developed
in [3, 2, 16, 17] that is based on the classical stochastic-gradient methodology (known more broadly as
stochastic approximation) [35], convergence guarantees have been limited to asymptotic convergence of the
expected value of a stationarity measure to zero; see, e.g., [3, Corollary 3.14]. In this paper, we present
new analyses of situations in which, for an instance of a method in this subclass, almost-sure convergence
guarantees of the primal iterates, Lagrange multipliers, and a stationarity measure can be guaranteed. (For a
straightforward analysis, we focus on a simplified variant of the algorithm from [3].) This brings the analysis
of this subclass of methods in line with analyses that show almost-sure convergence of stochastic-gradient-
based methods for the unconstrained setting; see §1.2. Other stochastic SQP-based methods for solving
continuous optimization problems with nonlinear equality constraints have been proposed recently (see, e.g.,
[1, 4, 5, 19, 27, 26, 30, 33]), and for these methods different types of convergence guarantees have been
proved due to the fact that they impose different (often stronger) requirements on the stochastic gradient
estimates. Therefore, our work in this paper is distinct from analyses for these other methods, although we
contend that the tools employed in this paper might be applicable when analyzing other related algorithms
as well. One article that presents results comparable to ours is [28], although in that article the algorithm
and assumptions are different than our setting.

Our first contribution is an analysis of situations in which almost-sure convergence of the primal iterates
of a stochastic SQP method can be guaranteed. Our main assumption for this analysis can be viewed as a
generalization of the Polyak- Lojasiewicz (PL) condition used in unconstrained optimization.

Our second contribution is an analysis of convergence of the sequence of Lagrange multipliers generated
by a stochastic SQP method. The convergence behavior of the Lagrange multipliers is of interest for several
reasons. For one thing, Lagrange multipliers are used for common certificates of stationarity. They can also
play an essential role in sensitivity analysis and active-set identification when solving inequality-constrained
problems. Since various algorithms for solving inequality-constrained problems employ algorithms for solv-
ing equality-constrained subproblems, it is important to provide convergence guarantees for the Lagrange
multipliers when solving equality-constrained problems. In our analysis, we first show that the expected
error in the Lagrange multiplier computed in any iteration of our stochastic SQP method of interest can be
bounded by the distance of the primal iterate to a primal stationary point plus a term related to the error
in the latest stochastic gradient estimate. Such a result is natural, and as in other settings of statistical
estimation it suggests that better Lagrange multiplier estimates can be obtained through averaging the mul-
tipliers obtained in each iteration. We consider such an approach as well; in particular, we show conditions
under which averaging can cause the expected error to vanish asymptotically. (Our approach to averaging is
related to the ergodic convergence analysis of optimization algorithms; see, e.g., [32, 12, 21]. It is worthwhile
to emphasize that it is different from dual averaging ideas that have been developed for acceleration [29].)

Under our combined assumptions, the stochastic SQP method that we analyze possesses almost-sure
convergence guarantees of the primal iterates, Lagrange multipliers, and a stationarity measure while only
employing stochastic gradient estimates. To illustrate the practical relevance of our theoretical contributions,
we provide the results of numerical experiments. For example, we demonstrate situations when averaging
of the Lagrange multipliers results in more accurate stationarity measures, which, as mentioned, is useful in
practice for recognizing (approximate) stationarity and other reasons.

1.1 Notation

We use R to denote the set of real numbers and R≥r (resp., R>r) to denote the set of real numbers greater
than or equal to (resp., greater than) r ∈ R. We use Rn to denote the set of n-dimensional real vectors
and Rm×n to denote the set of m-by-n-dimensional real matrices. We use Sn to denote the set of symmetric
matrices in Rn×n, Sn⪰0 to denote the set of positive semidefinite matrices in Sn, and Sn≻0 to denote the set
of positive definite matrices in Sn⪰0. We use N to denote the positive integers, and for any k ∈ N define
[k] := {1, . . . , k}.

Given a real matrix A ∈ Rn×m, we use σmin(A) to denote the smallest singular value of A and σmax(A) =
∥A∥2 to denote the largest singular value of A, i.e., the spectral norm of A. Given such a matrix A with full
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column rank, we denote by A† = (ATA)−1AT the Moore–Penrose pseudoinverse of A. For future reference,
we state the following lemma pertaining to pseudoinverses.

Lemma 1.1 (see[37, Theorem 4.1]). If A ∈ Rn×m and B ∈ Rn×m have full column rank, then ∥A†−B†∥2 ≤
∥A†∥2∥B†∥2∥A−B∥2.

For a real-valued sequence {xk} (of numbers, vectors, or matrices), we use {xk} ⊂ Rn to indicate that
xk ∈ Rn for all k ∈ N. Similarly, for a sequence of random variables {Xk}, we use {Xk} ⊂ Rn to indicate that
Xk ∈ Rn for all k ∈ N, which in turn means that, for all k ∈ N, a realization/outcome of Xk is an element of
Rn. Generally, we use a capital letter to denote a random variable and the corresponding lower-case letter
to denote a realization of the random variable. For example, a stochastic objective gradient estimator at
iteration k ∈ N is denoted as Gk, of which a realization is written as gk.

Let {Vk} ⊂ Rn×m be a sequence of random variables and V be a random variable all defined with respect
to a probability space (Ω,F ,P); i.e., an realization ω ∈ Ω defines a realization Vk(ω) for any k ∈ N and a
realization V (ω). The sequence {Vk} converges in distribution to V if and only if the cumulative distribution
functions (CDFs) of the elements of {Vk} converge pointwise to the CDF of V as k → ∞; e.g., for such

{Vk} ⊂ Rn and a matrix Σ ∈ Sn, we write {Vk}
d−→ N (0,Σ) to indicate that {Vk} converges in distribution to

a multivariate normal random vector with mean zero and covariance matrix Σ. The sequence {Vk} converges

in probability to V as k →∞, which we denote by {Vk}
p−→ V , if and only if for any ϵ ∈ R>0 one finds

lim
k→∞

P[∥Vk − V ∥2 > ϵ] = 0.

Finally, {Vk} converges almost-surely to V as k →∞, which we denote by {Vk}
a.s.−−→ V , if and only if there

exists Ω0 ⊂ Ω with P(Ω0) = 0 such that

lim
k→∞

Vk(ω) = V (ω) for all ω ∈ Ω \ Ω0.

We use 1A to denote an indicator random variable for the event A, which takes the value 1 if event A
occurs and takes the value 0 otherwise.

1.2 Mathematical Background

In the classical article by Robbins and Monro [35], it is shown that a straightforward approach of stochastic
approximation for solving an equation with a unique root x⋆ can lead to convergence in probability of the
iterate sequence. Specifically, under certain basic assumptions, as long as the prescribed sequence of step
sizes {αk} employed by the algorithm is unsummable, but square summable (e.g., αk = 1/k for all k ∈ N),
it can be shown that the generated sequence of solution estimates {Xk} satisfies

lim
k→∞

E[(Xk − x⋆)2] = 0, (1)

which in turn implies that {Xk}
p−→ x⋆. Cast into the context of minimizing a smooth, potentially nonconvex

objective f : Rn → R with a stochastic-gradient method, these same principles can be used to prove (see,
e.g., [9])

lim
k→∞

E[∥∇f(Xk)∥22] = 0.

In a later article by Robbins and Siegmund [36], certain conditions are shown to offer an almost-sure
convergence guarantee for a sequence generated by stochastic approximation. In particular, the article first
proves a general theorem, which we state in a slightly simplified form for our purposes.

Lemma 1.2 (see[36, Theorem 1]). Let (Ω,F ,P) be a probability space and let {Fk} with Fk ⊆ Fk+1 for all
k ∈ N be a sequence of sub-σ-algebras of F . Let {Rk}, {Pk}, and {Qk} be sequences of nonnegative random
variables such that, for all k ∈ N, the random variables Rk, Pk, and Qk are Fk-measurable. If

∑∞
k=1 Qk <∞

and, for all k ∈ N, one has
E[Rk+1|Fk] ≤ Rk − Pk + Qk,

then, almost-surely,
∑∞

k=1 Pk <∞ and lim
k→∞

Rk exists and is finite.
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Applied to the context of stochastic approximation for solving an equation, it is shown in [36] that under
certain assumptions (which we omit for brevity) the conclusion in (1) can be strengthened for the same
algorithm to

P
[

lim
k→∞

Xk = x⋆

]
= 1,

which is to say that {Xk}
a.s.−−→ x⋆. One can derive a similar such result in the context of minimizing a smooth,

potentially nonconvex objective function f : Rn → R with a stochastic-gradient method. For example, under
a related set of conditions, it has been shown by Bertsekas and Tsitsiklis [7] that a stochastic-gradient method
can be guaranteed to yield

P
[

lim
k→∞

∇f(Xk) = 0

]
= 1, i.e., {∇f(Xk)} a.s.−−→ 0. (2)

Our main contributions in this paper are also almost-sure convergence guarantees, but for a stochastic
SQP method in the context of nonlinear-equality-constrained optimization. In particular, we show almost-
sure convergence guarantees for the primal iterates, Lagrange multipliers, and stationarity measures for a
simplified variant of the algorithm from [3]. Some of our almost-sure convergence guarantees for the Lagrange
multipliers computed by our method of interest pertains to an averaged sequence. For our analysis of this
sequence, we require two key results that are known from the literature. The first result that we need
is the central limit theorem (CLT) for a multidimensional martingale difference triangular array stated as
Lemma 1.3.

Lemma 1.3 (Multidimensional martingale central limit theorem). Let {(ξk,i,Fk,i)}k∈N,i∈[k] be an n-dimensional
martingale difference triangular array, i.e., with an initial generating σ-algebra Fk,1 for all k ∈ N, one has

(i) Fk,i = σ(ξk,1, . . . , ξk,i−1) for all k ∈ N and i ∈ {2, . . . , k} and

(ii) E[ξk,i|Fk,i] = 0 for all k ∈ N and i ∈ [k].

If the array has the properties that

ξk,i is square-integrable, i.e., E[∥ξk,i∥22] <∞ for all (k, i) ∈ N × [k], (3a){
k∑

i=1

E[∥ξk,i∥221{∥ξk,i∥2>δ}|Fk,i]

}
p−→ 0 for all δ ∈ R>0, and (3b){

k∑
i=1

E[ξk,iξ
T
k,i|Fk,i]

}
p−→ Σ for some Σ ∈ Sn, (3c)

then

{
k∑

i=1

ξk,i

}
d−→ N (0,Σ).

The multidimensional martingale CLT in Lemma 1.3 can be derived by applying the one-dimensional mar-
tingale CLT (see, e.g., [25, Theorem 2.3] and [20, Corollary 3.1]) to ξak,i := aT ξk,i for arbitrary a ∈ Rn

since {
∑k

i=1 ξ
a
k,i}

d−→ N (0, aT Σa) for any given a ∈ Rn implies that {
∑k

i=1 ξk,i}
d−→ N (0,Σ); see, e.g., [18,

Exercise 3.10.8]. A similar result is used in [24]. We refer to (3b) as Lindeberg’s condition, as is common in
the literature.

The second key result that we need is the following, which we refer to as a moment convergence result.
It follows, e.g., by [14, Theorem 4.5.2].

Lemma 1.4 (Moment convergence). Let {Xk} ⊂ Rn be a sequence of random vectors such that {Xk}
d−→ X

and sup
k∈N

E[∥Xk∥Θ2 ] <∞ for some Θ ∈ R>0. Then, for all θ ∈ (0,Θ), one finds that lim
k→∞

E[∥Xk∥θ2] = E[∥X∥θ2].

5



1.3 Outline

In Section 2, we present formally the continuous optimization problem of interest and the stochastic SQP
algorithm for solving it that we analyze in the remainder of the paper. We also provide preliminary as-
sumptions that we make about the problem and the algorithm, and state basic properties of the algorithm
that transfer from the prior work in [3]. In Section 3, we prove convergence results for the primal iterates
generated by the algorithm. In Section 4, we prove convergence results for Lagrange multiplier sequences
that are generated by the algorithm. The results of numerical experiments are provided in Section 5 and
concluding remarks are offered in Section 6.

2 Problem and Algorithm Descriptions

The algorithm that we study is designed to solve

min
x∈Rn

f(x) subject to (s.t.) c(x) = 0 with f(x) = Eι[F (x, ι)], (4)

where f : Rn → R and c : Rn → Rm are continuously differentiable, ι is a random variable with associated
probability space (Ωι,Fι,Pι), F : Rn × Ωι → R, and Eι[·] denotes expectation taken with respect to Pι.
Given an initial point x1 ∈ Rn, any run of the algorithm generates a sequence of iterates {xk} ⊂ Rn, i.e., a
realization of a stochastic process {Xk} ⊂ Rn. We make the following assumption about problem (4) and
the generated sequence of iterates.

Assumption 2.1. There exists open convex X ⊆ Rn containing {Xk} ⊂ Rn such that the following hold.
The objective function f : Rn → R is continuously differentiable and bounded below over X and its gradient
function ∇f : Rn → Rn is bounded and Lipschitz continuous over X . The constraint function c : Rn → Rm

(where m ≤ n) is Lipschitz continuous, continuously differentiable, and bounded over X , its Jacobian function
∇cT : Rn → Rm×n is Lipschitz continuous over X , and ∇c(x)T has full row rank for all x ∈ X with singular
values that are bounded below uniformly by a positive constant over X .

It would be possible to loosen Assumption 2.1 to require only that X contains {Xk} almost surely. How-
ever, since this would require repeated references to probability-one events throughout our analysis without
strengthening our conclusions substantially, we do not bother with this level of generality.

Under Assumption 2.1, there exists a tuple of constants, which we denote by (κX , finf , κ∇f , κc, κ∇c, r) ∈
R>0 × R × R>0 × R>0 × R>0 × R>0, such that

∥x∥2 ≤ κX , f(x) ≥ finf , ∥∇f(x)∥2 ≤ κ∇f ,

∥c(x)∥2 ≤ κc, ∥∇c(x)∥2 ≤ κ∇c, and σmin(∇c(x)) ≥ r
(5)

for all x ∈ X , and there exists (L∇f , Lc,Γ) ∈ R>0 × R>0 × R>0 such that

∥∇f(x)−∇f(x)∥2 ≤ L∇f∥x− x∥2, ∥c(x)− c(x)∥2 ≤ Lc∥x− x∥2,
and ∥∇c(x)−∇c(x)∥2 ≤ Γ∥x− x∥2

(6)

for all (x, x) ∈ X × X . The Lagrangian function L : Rn × Rm → R corresponding to problem (4) is defined
by L(x, y) = f(x) + c(x)T y, and the first-order stationarity conditions for (4) are given by

0 =

[
∇xL(x, y)
∇yL(x, y)

]
=

[
∇f(x) +∇c(x)y

c(x)

]
. (7)

We refer to any (x, y) ∈ Rn × Rm satisfying (7) as a stationary point for problem (4). In addition, we refer
to any x ∈ Rn such that there exists y ∈ Rm with (x, y) satisfying (7) as a primal stationary point for (4).

Let us now describe the algorithm whose convergence properties are the subject of our study. We state
the algorithm in terms of a realization of the quantities it generates. At an iterate xk ∈ Rn, the algorithm
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generates a stochastic gradient estimate gk ≈ ∇f(xk) ∈ Rn, and makes use of hk ∈ Sn (see upcoming
Assumptions 2.3 and 2.4 about these quantities). Given gk and hk, a direction dk ∈ Rn is computed by
solving

min
d∈Rn

gTk d + 1
2d

Thkd s.t. c(xk) +∇c(xk)T d = 0. (8)

Under upcoming Assumption 2.4 (which includes that dThkd > 0 for all d ∈ Null(∇c(xk)T )), the solution
dk of (8) as well as a Lagrange multiplier for the constraints, call it yk ∈ Rm, can be obtained by solving[

hk ∇c(xk)
∇c(xk)T 0

] [
dk
yk

]
= −

[
gk
ck

]
. (9)

Upon computation of the search direction in iteration k ∈ N, the algorithm selects a step size αk ∈ (0, 1].
Specifically, with a merit parameter τ ∈ R>0, ratio parameter ξ ∈ R>0 (see upcoming Assumption 2.2), and
(L∇f ,Γ) from (6), the algorithm that we analyze selects the step size for all k ∈ N as

αk ← βkτξ
τL∇f+Γ for some βk ∈ (0, 1], (10)

where {βk} is unsummable, but square-summable. This choice of step sizes means that the algorithm that
we analyze is a simplified variant of the algorithm from [3]; see [3] and below for further discussion about
the merit parameter, ratio parameter, and the particular formula for the step size stated in (10). (We
conjecture that our ultimate conclusions also hold for the original variant of the algorithm from [3] in the
event considered in Section 3.2.1 of that paper, but for our aims in this paper we merely consider the simplified
variant presented here in order to allow our analysis not to be obscured by auxiliary details.) One aspect
that makes our variant a simplified one is that we assume that the merit and ratio parameters are initialized
to values that are sufficiently small such that the algorithm does not need to update them adaptively. This
means that, for our analysis, we can consider the merit function (with fixed merit parameter τ) ϕτ : Rn → R
defined by ϕτ (x) = τf(x) + ∥c(x)∥1. (Any convex norm can be used for the constraint violation. We use the
ℓ1-norm for consistency with [3].) A local approximation of ϕτ at x ∈ Rn can be defined through a function
qτ : Rn × Rn × Sn × Rn → R; specifically, with g ∈ Rn and h ∈ Sn, a local approximation of ϕτ at x as a
function of d is given by

qτ (x, g, h, d) = τ(f(x) + gT d + 1
2 max{dThd, 0}) + ∥c(x) +∇c(x)T d∥1. (11)

The reduction in qτ (x, g, h, ·) offered by d with c(x) +∇c(x)T d = 0 can be defined through ∆qτ : Rn ×Rn ×
Rn×n × Rn → R defined by

∆qτ (x, g, h, d) = qτ (x, g, h, 0)− qτ (x, g, h, d)

= −τ(gT d + 1
2 max{dThd, 0}) + ∥c(x)∥1. (12)

Consistent with [3, Section 3.2.1], we make the following assumption.

Assumption 2.2. The parameters ξ ∈ R>0 and τ ∈ R>0 are chosen such that, for some ν ∈ (0, 1) and all
k ∈ N in any run, the following hold.

(i) ξ ≤ ξtrialk , where one defines

ξtrialk :=

{
∞ if dk = 0
∆qτ (xk,gk,hk,dk)

τ∥dk∥2
2

otherwise;

(ii) τ ≤ τ trial,truek , where, with dtruek being the solution of (8) if gk were replaced by ∇f(xk) and ρk :=
∇f(xk)T dtruek + max{(dtruek )Thkd

true
k , 0}, one defines

τ trial, truek :=

{
∞ if ρk ≤ 0
(1−ν)∥c(xk)∥1

ρk
otherwise.
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The definition of τ trial, truek and Assumption 2.2 ensure for all k ∈ N that

∆qτ (xk,∇f(xk), hk, d
true
k ) ≥ 1

2τ max{(dtruek )Thkd
true
k , 0}+ ν∥ck∥1. (13)

Overall, the step-size choice in (10) along with Assumption 2.2 results in a simplified variant of the adaptive
strategy presented in [3], and one finds from [3] that this setting ensures that the step from xk to xk+1 yields
a sufficient-decrease-type property that is relevant for our analysis; see Lemma 2.1 below.

The stochastic SQP method that we study is stated in Algorithm 1.

Algorithm 1 Stochastic SQP

Require: x1 ∈ Rn; (L∇f ,Γ) ∈ R>0 × R>0 (see (6)); (τ, ξ) ∈ R>0 × R>0 satisfying Assumption 2.2; {βk} ⊂
(0, 1] that is unsummable, but square-summable.

1: for k ∈ N do
2: Compute gk (see Assumption 2.3).
3: Compute hk (see Assumption 2.4).
4: Compute (dk, yk) by solving (8).
5: Set αk by (10).
6: Set xk+1 ← xk + αkdk.
7: end for

All that remains before presenting our analysis are to articulate some final assumptions and state a few
key relations from [3]. Considering the outcomes of entire runs of Algorithm 1, henceforth we consider the
probability space (Ω,F ,P), where Ω :=

∏∞
k=1 Ωι. In this manner, each realization of a run of the algorithm

can be associated with ω ∈ Ω, an infinite-dimensional tuple whose kth element is ωk ∈ Ωι which determines
the stochastic gradient estimate. The stochastic process defined by Algorithm 1 can thus be expressed as

{(Xk(ω), Gk(ω), Hk(ω), Dk(ω), Dtrue
k (ω), Yk(ω), Y true

k (ω))},

where, for all k ∈ N, the random variables are the iterate Xk(ω), stochastic gradient estimator Gk(ω),
symmetric matrix Hk(ω), search direction Dk(ω), true search direction Dtrue

k (ω), Lagrange multiplier Yk(ω),
and true Lagrange multiplier Y true

k (ω). (As in Assumption 2.2, the true search direction and Lagrange
multiplier are defined by the solution of (9) if the stochastic gradient were replaced by the true gradient.)
For instance, given ω that specifies a particular outcome of a run of the algorithm, the quantity Xk(ω) ∈ Rn

is the kth iterate. Given initial conditions (including that X1(ω) = x1 ∈ Rn for all ω ∈ Ω), let F1 denote
the σ-algebra corresponding to the initial conditions and, for all k ∈ N \ {1}, let Fk denote the σ-algebra
defined by the initial conditions and the random variables {G1, . . . , Gk−1}. We assume the following.

Assumption 2.3. For all k ∈ N, the stochastic gradient estimator satisfies E[Gk|Fk] = ∇f(Xk). In
addition, there exists σ ∈ R>0 such that, for all k ∈ N, it holds that E[∥Gk −∇f(Xk)∥22|Fk] ≤ σ2.

Assumption 2.4. For all k ∈ N, the matrix Hk ∈ Sn is Fk-measurable and bounded in ℓ2-norm by
κH ∈ R>0. In addition, there exists ζ ∈ (0, κH ] such that, for all k ∈ N, uTHku ≥ ζ∥u∥22 for all
u ∈ Null(∇c(Xk)T ).

Under Assumptions 2.3 and 2.4, it follows that {Fk} is a filtration for the probability space (Ω,F ,P). In
particular, the initial conditions and a realization of {G1, . . . , Gk−1} determine the realizations of {(Xj , Hj , D

true
j , Y true

j )}kj=1

and {(Dj , Yj)}k−1
j=1 , i.e., for all k ∈ N, one has that (Xk, Hk, D

true
k , Y true

k ) is Fk-measurable while (Gk, Dk, Yk)
is Fk+1-measurable. Examples of symmetric matrices satisfying Assumption 2.4 for each k ∈ N are Hk = I
or Hk being (an approximation of) the Hessian of the Lagrangian at (Xk, Yk−1) as long as safeguards are
included to ensure that Hk is sufficiently positive definite in the null space of ∇c(Xk)T , as required by
Assumption 2.4.

The following lemma characterizes decreases of the merit function ϕτ and the boundedness of ∆qτ ; it is
adapted from Lemmas 3.7, 3.8, and 3.12 in [3].
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Lemma 2.1. For all k ∈ N, it follows that E[Dk|Fk] = Dtrue
k ,

ϕτ (Xk + αkDk)− ϕτ (Xk)

≤ − αk∆qτ (Xk,∇f(Xk), Hk, D
true
k )

+ 1
2αkβk∆qτ (Xk, Gk, Hk, Dk) + αkτ∇f(Xk)T (Dk −Dtrue

k ), (14)

and
E[∆qτ (Xk, Gk, Hk, Dk)|Fk] ≤ ∆qτ (Xk,∇f(Xk), Hk, D

true
k ) + τζ−1σ2. (15)

3 Convergence of primal iterates

One can derive from the analysis in [3] that, under Assumptions 2.1, 2.2, 2.3, and 2.4, Algorithm 1 yields
(recall the stationarity conditions (7))

lim inf
k→∞

E[∥∇f(Xk) +∇c(Xk)Y true
k ∥22 + ∥c(Xk)∥2] = 0; (16)

see [3, Corollary 3.14] for further details. This lower limit in (16) does not imply that the primal iterate se-
quence converges in any particular sense to a primal stationary point. In this section, we establish conditions
under which almost-sure convergence of the primal iterate sequence can be guaranteed, which when coupled
with the results of the next section (in particular, Corollary 4.3) provides a rich picture of the convergence
behavior of Algorithm 1.

Before presenting the results of this section, let us state a common decomposition of the search direction
that is used in our analysis. Observe by the Fundamental Theorem of Linear Algebra that Dk can be
decomposed as Dk = Uk +Vk, where Uk ∈ Null(∇c(Xk)T ) and Vk ∈ Range(∇c(Xk)). Under Assumption 2.1,
we can now introduce Zk ∈ Rn×(n−m) as a matrix whose columns form a basis for Null(∇c(Xk)T ). It follows
that Uk = ZkWk for some Wk ∈ Rn−m. Now, from (9), it follows that

−c(Xk) = ∇c(Xk)TDk = ∇c(Xk)T (ZkWk + Vk) = ∇c(Xk)TVk.

Since ∇c(Xk)T has full row rank under Assumption 2.1, the unique Vk ∈ Range(∇c(Xk)) that solves this
linear system is given by

Vk = −∇c(Xk)(∇c(Xk)T∇c(Xk))−1c(Xk) = −(∇c(Xk)†)T c(Xk). (17)

Hence, from (9) and (17), it follows under Assumption 2.4 that

−Gk = Hk(ZkWk + Vk) +∇c(Xk)Yk

=⇒ Wk = −(ZT
k HkZk)−1ZT

k (Gk + HkVk)

=⇒ ZkWk = −Zk(ZT
k HkZk)−1ZT

k (Gk + HkVk)

= −Zk(ZT
k HkZk)−1ZT

k (Gk −Hk(∇c(Xk)†)T c(Xk)). (18)

Our main result of this section is Theorem 3.1 on page 11. Leading up to that result, we require two
technical lemmas that are presented next. The first, Lemma 3.1 below, establishes a result about the
asymptotic behavior of the sequence of merit function values, namely, {ϕτ (Xk)}, and about the sequence of
reductions in the model of the merit function corresponding to the true objective gradients and corresponding
search directions. Note that the proof of the lemma uses the fact that the sequence {βk} employed in
Algorithm 1 is unsummable (i.e.,

∑∞
k=1 βk =∞), but square-summable (i.e.,

∑∞
k=1 β

2
k <∞).

Lemma 3.1. Suppose that Assumptions 2.1, 2.2, 2.3, and 2.4 hold. Then,

lim
k→∞

{ϕτ (Xk)} exists and is finite almost surely, and

lim inf
k→∞

∆qτ (Xk,∇f(Xk), Hk, D
true
k ) = 0 almost surely.
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Proof. For all k ∈ N, define Rk := ϕτ (Xk) − τfinf , and observe from Assumption 2.1 that Rk ≥ 0 for all
k ∈ N. Also, for arbitrary k ∈ N, one finds

E[Rk+1|Fk]

= E[ϕτ (Xk + αkDk)|Fk]− τfinf

≤ ϕτ (Xk)− τfinf − αkE[∆qτ (Xk,∇f(Xk), Hk, D
true
k )|Fk]

+ 1
2αkβkE[∆qτ (Xk, Gk, Hk, Dk)|Fk]

= Rk − αk∆qτ (Xk,∇f(Xk), Hk, D
true
k ) + 1

2αkβkE[∆qτ (Xk, Gk, Hk, Dk)|Fk]

≤ Rk − αk∆qτ (Xk,∇f(Xk), Hk, D
true
k )

+ 1
2αkβk

(
∆qτ (Xk,∇f(Xk), Hk, D

true
k ) + τζ−1σ2

)
= Rk − αk(1− 1

2βk)∆qτ (Xk,∇f(Xk), Hk, D
true
k ) + 1

2αkβkτζ
−1σ2

≤ Rk − αk∆qτ (Xk,∇f(Xk), Hk, D
true
k ) + 1

2αkβkτζ
−1σ2

= Rk − βkτξ
τL∇f+Γ∆qτ (Xk,∇f(Xk), Hk, D

true
k ) +

β2
kτ

2ξσ2

2ζ(τL∇f+Γ) , (19)

where the first inequality follows from Lemma 2.1, the second follows from (15), and the third follows from
(13) and the fact that {βk} ⊂ (0, 1]. Now define

Pk := βkτξ
τL∇f+Γ∆qτ (Xk,∇f(Xk), Hk, D

true
k ) and Qk :=

β2
kτ

2ξσ2

2ζ(τL∇f+Γ)

and observe that Pk ≥ 0 for all k ∈ N follows by (13), Qk ≥ 0 for all k ∈ N follows since {βk} ⊂ (0, 1], and∑∞
k=1 Qk <∞ since

∑∞
k=1 β

2
k <∞. Therefore, with (19), applying Lemma 1.2 shows that, almost surely,

∞∑
k=1

Pk =

∞∑
k=1

αk∆qτ (Xk,∇f(Xk), Hk, D
true
k ) <∞

and limk→∞ Rk = limk→∞(ϕτ (Xk)−finf) exists and is finite. The latter fact leads directly to the first desired
conclusion, whereas the former fact along with

∑∞
k=1 βk =∞ (so

∑∞
k=1 αk =∞) yields the second.

The components of our second technical lemma can be derived from various results from [3], namely,
Lemmas 2.10, 2.11, 2.12, and 3.4 in [3]. Nonetheless, we provide a proof of the lemma for the sake of
completeness.

Lemma 3.2. Suppose that Assumptions 2.1, 2.2, 2.3, and 2.4 hold. Then, with respect to the decomposition
Dtrue

k = U true
k + Vk for all k ∈ N, where U true

k ∈ Null(∇c(Xk)T ) and Vk ∈ Range(∇c(Xk)), and with

Ψk :=

{
∥U true

k ∥22 + ∥c(Xk)∥2 if ∥U true
k ∥22 ≥ κuv∥Vk∥22

∥c(Xk)∥2 otherwise.

the following statements hold.

(a) There exists κuv ∈ R>0 such that, for all k ∈ N,

∥U true
k ∥22 ≥ κuv∥Vk∥22 =⇒ (Dtrue

k )THkD
true
k ≥ 1

2ζ∥U
true
k ∥22.

(b) There exists κΨ ∈ R>0 such that, for all k ∈ N,

∥Dtrue
k ∥22 + ∥c(Xk)∥2 ≤ (κΨ + 1)Ψk.

(c) There exists κq ∈ R>0 such that, for all k ∈ N,

∆qτ (Xk,∇f(Xk), Hk, D
true
k ) ≥ κqΨk.

10



Proof. We prove each part in turn.

(a) For arbitrary k ∈ N and κ ∈ R>0, one finds under Assumption 2.4 that ∥U true
k ∥22 ≥ κ∥Vk∥22 implies

(Dtrue
k )THkD

true
k = (U true

k )THkU
true
k + 2(U true

k )THkVk + V T
k HkVk

≥ ζ∥U true
k ∥22 − 2∥U true

k ∥2∥Hk∥2∥Vk∥2 − ∥Hk∥2∥Vk∥22
≥ (ζ − 2κH√

κ
− κH

κ )∥U true
k ∥22.

Thus, the desired result holds for any κuv ∈ R>0 such that 2κH√
κuv

+ κH

κuv
≤ ζ

2 .

(b) If ∥U true
k ∥22 ≥ κuv∥Vk∥22, it follows that

∥Dtrue
k ∥22 = ∥U true

k ∥22 + ∥Vk∥22 ≤ (1 + κ−1
uv )∥U true

k ∥22
≤ (1 + κ−1

uv )(∥U true
k ∥22 + ∥c(Xk)∥2).

Otherwise, with (17) and Assumption 2.1, it follows that

∥Dtrue
k ∥22 = ∥U true

k ∥22 + ∥Vk∥22 < (κuv + 1)∥Vk∥22
= (κuv + 1)∥(∇c(Xk)†)T c(Xk)∥22
≤ κc(κuv + 1)r−2∥c(Xk)∥2.

Hence, ∥Dtrue
k ∥22 ≤ κΨΨk holds with κΨ := max{1+κ−1

uv , κc(κuv +1)r−2}. The desired conclusion then
follows since, by definition, Ψk ≥ ∥c(Xk)∥2.

(c) By (13) and part (a), it follows that ∥U true
k ∥22 ≥ κuv∥Vk∥22 implies

∆qτ (Xk,∇f(Xk), Hk, D
true
k ) ≥ 1

4τζ∥U
true
k ∥22 + ν∥c(Xk)∥1,

and otherwise one still finds ∆qτ (Xk,∇f(Xk), Hk, D
true
k ) ≥ ν∥c(Xk)∥1. Hence, since ∥ · ∥2 ≤ ∥ · ∥1, the

result follows with κq := min{ 14τζ, ν}.

We are now prepared to prove our main result of this section, which establishes conditions under which
{ϕτ (Xk)} converges almost-surely to a minimizer of the merit function at which the constraints of problem (4)
are satisfied and that {Xk} converges almost-surely to a primal stationary point (in fact, a local minimizer).
After proving the result, we provide some additional commentary on the inequality (20) that is required for
the theorem.

Theorem 3.1. Suppose that Assumptions 2.1, 2.2, 2.3, and 2.4 hold. In addition, suppose that there exists
x⋆ ∈ X with c(x⋆) = 0, µ ∈ R>1, and ϵ ∈ R>0 such that for all x ∈ Xϵ,x⋆

:= {x ∈ X : ∥x − x⋆∥2 ≤ ϵ} one
finds

ϕτ (x)− ϕτ (x⋆)

{
= 0 if x = x⋆

∈ (0, µ(τ∥Z(x)T∇f(x)∥22 + ∥c(x)∥2)] otherwise,
(20)

where for all x ∈ Xϵ,x⋆
one defines Z(x) ∈ Rn×(n−m) as some orthonormal matrix whose columns form a

basis for the null space of ∇c(x)T . Then, if lim sup
k→∞

{∥Xk − x⋆∥2} ≤ ϵ almost surely, it follows that

{ϕτ (Xk)} a.s.−−→ ϕτ (x⋆), {Xk}
a.s.−−→ x⋆,

and

{[
∇f(Xk) +∇c(Xk)Y true

k

c(Xk)

]}
a.s.−−→ 0.

11



Proof. As before, for all k ∈ N, let Zk ∈ Rn×(n−m) denote an orthonormal matrix whose columns form a
basis for Null(∇c(Xk)), where if Xk ∈ Xϵ,x⋆ then Zk = Z(Xk) is one such that (20) holds at x = Xk. For
arbitrary k ∈ N, it follows from (9) that the reduced gradient satisfies

ZT
k ∇f(Xk) = −ZT

k HkU
true
k − ZT

k HkVk,

from which it follows with (17), (18), and Assumptions 2.1 and 2.4 that

∥ZT
k ∇f(Xk)∥22 = ∥ZT

k HkU
true
k + ZT

k HkVk∥22
≤ 2(∥ZT

k HkU
true
k ∥22 + ∥ZT

k HkVk∥22)

≤ 2κ2
H(∥U true

k ∥22 + ∥Vk∥22)

≤ 2κ2
H(∥U true

k ∥22 + ∥(∇c(Xk)†)T ∥22∥c(Xk)∥22)

≤ 2κ2
H(∥U true

k ∥22 + κcr
−2∥c(Xk)∥2).

Combining this with (20) and Lemma 3.2, one finds that Xk ∈ Xϵ,x⋆
implies

ϕτ (Xk)− ϕτ (x⋆)

≤ µ(2τκ2
H∥U true

k ∥22 + (2τκcκ
2
Hr−2 + 1)∥c(Xk)∥2)

≤ µmax{2τκ2
H , 2τκcκ

2
Hr−2 + 1}(∥Dtrue

k ∥22 + ∥c(Xk)∥2)

≤ µmax{2τκ2
H , 2τκcκ

2
Hr−2 + 1}(κΨ + 1)Ψk

≤ µmax{2τκ2
H , 2τκcκ

2
Hr−2 + 1}(κΨ + 1)κ−1

q ∆qτ (Xk,∇f(Xk), Hk, D
true
k ).

Since by Lemma 3.1 one has lim inf
k→∞

∆qτ (Xk,∇f(Xk), Hk, D
true
k ) = 0 almost surely, it follows from above and

the conditions of the theorem that the limit lim
k→∞

ϕτ (Xk) (which exists almost surely by Lemma 3.1) must

be ϕτ (x⋆), as desired. The remaining conclusions follow from {ϕτ (Xk)} a.s.−−→ ϕτ (x⋆) and the facts that, by
(20), the point x⋆ is the unique point in Xϵ,x⋆

with merit function value equal to ϕτ (x⋆) and that is a primal
stationary point.

Observe that (20) can be viewed as a generalization of the well-known Polyak– Lojasiewicz condition
from the unconstrained continuous optimization literature [31]. Indeed, if the constraints are affine and one
considers x such that x−x⋆ ∈ Null(∇c(x⋆)T ), then (20) says that the squared ℓ2-norm of the reduced gradient
Z(x)T∇f(x) is at least proportional to ϕτ (x)−ϕτ (x⋆). On the other hand, if the objective function remains
constant along displacements in Range(∇c(x)), then (20) says that the norm of the constraint violation is
at least proportional to this difference in merit function values. More generally, such as for nonlinear f and
c, the condition (20) is a generalization of these special cases that says that the combination of the squared
ℓ2-norm of the reduced gradient and constraint violation is at least proportional to the optimality gap in the
merit function in a neighborhood of the point x⋆.

4 Convergence of Lagrange multipliers

In this section, we study convergence properties of the sequence {Yk} generated by Algorithm 1. Let us begin
by expressing the solution component Yk of (9) for arbitrary k ∈ N using the step decomposition stated in
(17) and (18). One finds by substituting (17) and (18) back into (9) gives

∇c(Xk)Yk = −(Hk(ZkWk + Vk) + Gk)

= (I −HkZk(ZT
k HkZk)−1ZT

k )(Hk(∇c(Xk)†)T c(Xk)−Gk),

from which it follows under Assumption 2.1 that

Yk = ∇c(Xk)†(I −HkZk(ZT
k HkZk)−1ZT

k )(Hk(∇c(Xk)†)T c(Xk)−Gk). (21)
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For notational convenience, let us now define the matrix

Mk := ∇c(Xk)†(I −HkZk(ZT
k HkZk)−1ZT

k ) ∈ Rm×n, (22)

which can be viewed as the product of a pseudoinverse and a projection matrix, so that we may succinctly
write from (21) that

Yk = Mk(Hk(∇c(Xk)†)T c(Xk)−Gk). (23)

(We remark in passing that an alternative to our subsequent discussions and analysis could be considered
where, for all k ∈ N, the vector Yk is not defined through (9), but rather is set as a so-called least squares
multiplier, i.e., as Yk = arg minY ∈Rm ∥Gk +∇c(Xk)Y ∥22. For one thing, this choice removes the dependence
of Yk on Hk, which might have certain advantages. However, for our purposes, we focus on multipliers
being computed through (9) since this is a popular approach in practice and does not require additional
computation.)

Our goal in our analysis of properties of Lagrange multiplier estimators is to prove convergence of such
estimators when the primal iterate approaches a primal stationary point for (4). After all, it is only when
the primal iterate lies in such a neighborhood (or at least a neighborhood of the feasible region) that the
Lagrange multiplier has meaning in terms of certifying stationarity. Consequently, a main focus in our results
is how Yk may be viewed through (23) as a function of the primal iterate Xk. For our analysis here, we
make the following assumption, where given x ∈ Rn and ϵ ∈ R>0 we define (consistent with Theorem 3.1)
the neighborhood Xϵ,x := {x ∈ Rn : ∥x− x∥2 ≤ ϵ}.

Assumption 4.1. Given x⋆ ∈ X as a primal stationary point for problem (4), there exist ϵ ∈ R>0, H :
Rn → Sn, LH ∈ R>0,M : Rn → Rm×n, and LM ∈ R>0 such that the following hold.

(i) Hk = H(Xk) whenever Xk ∈ Xϵ,x⋆ ;

(ii) ∥H(x)−H(x)∥2 ≤ LH∥x− x∥2 for all (x, x) ∈ Xϵ,x⋆ ×Xϵ,x⋆ ;

(iii) Mk =M(Xk) whenever Xk ∈ Xϵ,x⋆
; and

(iv) ∥M(x)−M(x)∥2 ≤ LM∥x− x∥2 for all (x, x) ∈ Xϵ,x⋆
×Xϵ,x⋆

.

A few important observations and justifications are in order.

• Assumption 4.1 states that, in a neighborhood of a primal stationary point x⋆, the algorithm sets the
matrix Hk through a Lipschitz continuous function of Xk. This clearly holds if the algorithm chooses
Hk = H for all k ∈ N for some prescribed H ∈ Sn≻0 that guarantees that Assumption 2.4 holds for
all k ∈ N. Alternatively, the requirements on {Hk} in Assumption 4.1 can be satisfied if second-order
derivatives of f are Lipschitz continuous and the algorithm chooses Hk as (an approximation of) the
Hessian of the objective at Xk, or even as (an approximation of) the Hessian of the Lagrangian at
(Xk, Y k) if the second-order derivatives of the components of c are also Lipschitz continuous and care
is taken in the selection of Y k. In practice, one might consider Y k = Yk−1 for all k ∈ N, but as
one can see, this choice is influenced by noise in the stochastic gradient estimators, which can cause
{Hk} to violate Assumption 2.4. An alternative choice that would not violate the assumption is to
choose Y k as a prescribed vector or at least one that remains fixed for all sufficiently large k ∈ N.
In any case, one finds that there exist reasonable choices for the algorithm to choose {Hk} such that
Assumption 4.1 holds. (We remark in passing that deterministic Newton-based methods for solving
constrained optimization problems can possess local convergence guarantees of the Lagrange multipliers
under relatively strong assumptions when Hk is the Hessian of the Lagrangian at (Xk, Yk−1), and this
might also be achievable for a stochastic algorithm with highly accurate gradient estimates. However,
since our algorithm of interest operates in a highly stochastic regime in which only Assumption 2.3
is assumed to hold, allowing unadulterated use of the Hessian of the Lagrangian at (Xk, Yk−1) is not
reasonable.)
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• Assumption 4.1 also states that, in a neighborhood of a primal stationary point x⋆, the matrix Mk

is defined through a Lipschitz continuous function of Xk. Given the assumptions about H, Assump-
tion 2.1 (which states that the constraint Jacobians have full row rank and the constraint Jacobian
function is Lipschitz continuous over the set X containing the iterates), and Lemma 1.1, it might
seem at first glance that this assumption about M is a straightforward consequence of these other
assumptions. However, one needs to be careful. To understand a potential issue when trying to draw
such a conclusion, recall that a product of functions that are Lipschitz continuous on a bounded set
is itself Lipschitz continuous on the set. Hence, one might attempt to justify our Lipschitz-continuity
assumption about M by assuming that, for all k ∈ N, the null space basis Zk can be viewed as being
generated by a Lipschitz continuous function of Xk. Note, however, that it has been shown in [11]
that, even when ∇c(·)T is continuous with values that have full row rank for all x ∈ Rn, there does not
necessarily exist continuous Z : Rn → Rn×(n−m) such that for all x ∈ Rn the columns of Z(x) form
a basis for Null(∇c(x)T ). That being said, as also shown in [11], it is possible to employ procedures
such that the reduced Hessian (approximation), namely, ZT

k HkZk, does not depend on the choice of
Zk, and, given a point x ∈ Rn at which ∇c(x)T has full row rank, there exists a neighborhood of
x over which one can define a “null space basis function” that is continuous over the neighborhood.
See also [10], which discusses two procedures that ensure that, in the neighborhood of a given point,
a null space basis can be defined by a Lipschitz continuous null space basis function. Overall, due
to these observations, we contend that assuming Lipschitz continuity of M—in a sufficiently small
neighborhood of x⋆, as is stated in Assumption 4.1—is justified for our analysis.

We are now prepared to prove that, near a primary stationary point, the expected error in the Lagrange
multiplier estimator is bounded by the distance of the primal iterate to the primal stationary point plus an
error due to the stochastic gradient estimator. The following theorem may be viewed as the main result of
this section since the subsequent results follow from it.

Theorem 4.1. Suppose that Assumptions 2.1, 2.2, 2.3, 2.4, and 4.1 hold, (x⋆, y⋆) is a stationary point for
problem (4), and ϵ ∈ R>0 is defined as in Assumption 4.1. Then, for any k ∈ N, one finds ∥Xk − x⋆∥2 ≤ ϵ
implies

∥Yk − y⋆∥2 ≤ κy∥Xk − x⋆∥2 + r−1∥∇f(Xk)−Gk∥2, (24)

where κy := κHLcr
−2 + L∇fr

−1 + κ∇fLM.

Proof. Under the conditions of the theorem, ∥Xk−x⋆∥2 ≤ ϵ and (23) imply that Yk = Mk(Hk(∇c(Xk)†)T c(Xk)−
Gk), where Mk = M(Xk) and Hk = H(Xk), while one can similarly derive that y⋆ = −M⋆∇f(x⋆), where
M⋆ =M(x⋆). Hence, the difference Yk − y⋆ can be decomposed into three parts as follows:

Yk − y⋆ = MkHk(∇c(Xk)†)T c(Xk)

+ Mk(∇f(x⋆)−Gk) + (M⋆ −Mk)∇f(x⋆).
(25)

Consequently, to bound ∥Yk − y⋆∥2 when ∥Xk −x⋆∥2 ≤ ϵ, one can employ the triangle inequality and bound
the norms of the three terms on the right-hand side of (25) separately. First, one finds that

∥MkHk(∇c(Xk)†)T c(Xk)∥2
≤ ∥∇c(Xk)†∥2∥I −HkZk(ZT

k HkZk)−1ZT
k ∥2∥Hk∥2∥(∇c(Xk)†)T ∥2∥c(Xk)∥2

≤ κHr−2∥c(Xk)− c(x⋆)∥2 ≤ κHLcr
−2∥Xk − x⋆∥2, (26)

where the first inequality follows from (22) and properties of norms; the second follows from c(x⋆) = 0,
Assumptions 2.1 and 2.4, and the fact that Pk := I − HkZk(ZT

k HkZk)−1ZT
k is a projection matrix, so

∥Pk∥2 ≤ 1; and the last follows from Lipschitz continuity of c (see (6)). Second,

∥Mk(∇f(x⋆)−Gk)∥2
≤ ∥∇c(Xk)†∥2∥I −HkZk(ZT

k HkZk)−1ZT
k ∥2∥∇f(x⋆)−Gk∥2
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≤ r−1∥∇f(x⋆)−Gk∥2
≤ r−1(∥∇f(x⋆)−∇f(Xk)∥2 + ∥∇f(Xk)−Gk∥2)

≤ L∇fr
−1∥Xk − x⋆∥2 + r−1∥∇f(Xk)−Gk∥2, (27)

where the first inequality follows from (22) and properties of norms, the second follows from Assumption 2.1
and ∥Pk∥2 ≤ 1 (see above), the third follows from ∇f(x⋆) − Gk = ∇f(x⋆) − ∇f(Xk) +∇f(Xk) − Gk and
the triangle inequality, and the last follows from Lipschitz continuity of ∇f (see (6)). Third,

∥(M⋆ −Mk)∇f(x⋆)∥2 ≤ ∥M⋆ −Mk∥2∥∇f(x⋆)∥2 ≤ κ∇fLM∥Xk − x⋆∥2 (28)

follows from properties of norms and Assumptions 2.1 and 4.1. Substituting (26), (27), and (28) into (25)
yields the desired conclusion.

Theorem 4.1 shows that whenever Xk is sufficiently close to a primal stationary point x⋆, the Lagrange
multiplier error ∥Yk − y⋆∥2 is bounded by a constant times the primal iterate error ∥Xk − x⋆∥2 plus a
constant times the error in the stochastic gradient estimator. The latter term is inevitable since, no matter
the proximity of Xk to x⋆, the Lagrange multiplier estimator Yk is influenced by Gk. To emphasize this point,
we present the following corollary showing that, under the same conditions as Theorem 4.1, the Lagrange
multiplier estimator Y true

k —which appears in the convergence guarantee [3, Corollary 3.14], even though it
is a quantity that is not actually computed in the algorithm—satisfies the same bound as Yk, except without
the additional noise.

Corollary 4.1. Suppose that Assumptions 2.1, 2.2, 2.3, 2.4, and 4.1 hold, (x⋆, y⋆) is a stationary point for
problem (4), and ϵ ∈ R>0 is defined as in Assumption 4.1. Then, for any k ∈ N, one finds ∥Xk − x⋆∥2 ≤ ϵ
implies

∥Y true
k − y⋆∥2 ≤ κy∥Xk − x⋆∥2, (29)

where κy ∈ R>0 is defined as in Theorem 4.1.

Proof. Following the same steps as in the proof of Theorem 4.1, the difference Y true
k − y⋆ can now be

decomposed as in (25) with Gk = ∇f(Xk). Therefore, in place of (27), one instead obtains the bound

∥∇c(Xk)†(I −HkZk(ZT
k HkZk)−1ZT

k )(∇f(x⋆)−∇f(Xk))∥2
≤ r−1∥∇f(x⋆)−∇f(Xk)∥2 ≤ L∇fr

−1∥Xk − x⋆∥2,

which when combined with (26), (28), and (25) gives the desired result.
The previous theorem and corollary lead to the following corollary, which considers the special case

that there exists an iteration number beyond which the primal iterates remain within a neighborhood of a
particular primal stationary point almost surely. In such a case, the expected error in the Lagrange multiplier
is bounded by a constant times the distance from the primal iterate to the primal stationary point plus a
term that is proportional to the bound on the noise of the stochastic gradient estimators. The corollary
also adds that the “true” multiplier does not have this additional error term. (We remind the reader that,

in Section 3, we have shown conditions under which one can conclude that {Xk}
a.s.−−→ x⋆. While this

convergence guarantee does not directly imply that k ∈ N exists as in the following corollary, it motivates
consideration of this special case as one of practical relevance.)

Corollary 4.2. Suppose that Assumptions 2.1, 2.2, 2.3, 2.4, and 4.1 hold, (x⋆, y⋆) is a stationary point for
problem (4), ϵ ∈ R>0 is defined as in Assumption 4.1, and for some k ∈ N one has almost surely that

∥Xk − x⋆∥2 ≤ ϵ for all k ∈ N with k ≥ k.

Then, for any k ∈ N with k ≥ k, one finds that

E[∥Yk − y⋆∥2|Fk] ≤ κy∥Xk − x⋆∥2 + r−1σ

and E[∥Y true
k − y⋆∥2|Fk] ≤ κy∥Xk − x⋆∥2,

where κy ∈ R>0 is defined as in Theorem 4.1.
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Proof. Assumption 2.3 and Jensen’s inequality imply for all k ∈ N that

E[∥Gk −∇f(Xk)∥2|Fk]2 ≤ E[∥Gk −∇f(Xk)∥22|Fk] ≤ σ2.

The desired conclusions follow from this fact, the conditions of the corollary, and the conclusions of Theo-
rem 4.1 and Corollary 4.1.

At this point, we have determined useful properties of two multiplier estimator sequences, {Yk} and
{Y true

k }. In the neighborhood of a stationary point (x⋆, y⋆), each element Y true
k of the latter sequence has

error that is proportional to the distance from Xk to the primal stationary point x⋆, which is as much as can
be expected. However, this estimator is not realized by the algorithm as it requires explicit knowledge of
the true gradient ∇f(Xk), which is not realized by the algorithm. Each element Yk of the former sequence
has the same error plus an additional error due to the stochastic gradient estimator. One can reduce this
error by computing a more accurate gradient estimate, say, using a large mini-batch of gradient estimates.
However, to avoid the need of computing a highly accurate gradient estimate in any given iteration, one
might ask whether it is possible to obtain an estimator with lower error merely under Assumption 2.3? Using
classical ideas from statistical estimation, specifically mean estimation, a natural idea to consider is whether
a more accurate estimator can be defined by an average, say, Y avg

k := 1
k

∑k
i=1 Yk. After all, if the stochastic

process {Xk} converges in some sense to x⋆, then with Yk defined through a continuous function of Xk in a
neighborhood of x⋆ for all k ∈ N, one might expect {Y avg

k } to converge in the same sense to y⋆.
The main challenge in the analysis of {Y avg

k } is that, in contrast to the classical setting of mean estima-
tion using independent and identically distributed random variables, the multipliers {Yk} are computed at
points {Xk} at which the distributions of {Gk} (or {∇f(Xk)} for that matter) are neither independent nor
identically distributed. Hence, our analysis of the averaged sequence requires some additional assumptions
that are introduced in the following lemma. We prove the lemma and a following theorem, then discuss and
provide justifications for these required assumptions in further detail.

Lemma 4.1. Suppose that Assumptions 2.1, 2.2, 2.3, 2.4, and 4.1 hold, and with Mk defined in (22) and
∆k := ∇f(Xk)−Gk for all k ∈ N one finds

1
kE[∥Mi∆i∥22] <∞ for all (k, i) ∈ N × [k], (30a){

1
k

k∑
i=1

E

[
∥Mi∆i∥221{

∥Mi∆i∥2√
k

>δ

}
∣∣∣∣∣Fi

]}
p−→ 0 for all δ ∈ R>0, (30b){

1
k

k∑
i=1

E[Mi∆i∆
T
i M

T
i |Fi]

}
p−→ Σ for some Σ ∈ Sn, and (30c)

sup
k∈N

E

∥∥∥∥∥
k∑

i=1

1√
k
Mi∆i

∥∥∥∥∥
Θ

2

 <∞ for some Θ ∈ R>1. (30d)

Then, it follows that

lim
k→∞

1
kE

[∥∥∥∥∥
k∑

i=1

Mi∆i

∥∥∥∥∥
2

]
= 0. (31)

Proof. For (k, i) ∈ N × [k], let Fk,i := Fi and ξk,i := 1√
k
Mi∆i. Under Assumption 2.3, it follows that

E[ξk,i|Fk,i] = 0 for all (k, i) ∈ N× [k] and that {(ξk,i,Fk,i)}k∈N,i∈[k] is an n-dimensional martingale difference
triangular array (see Lemma 1.3). Employing Lemma 1.3, one finds that{

k∑
i=1

ξk,i

}
=

{
k∑

i=1

1√
k
Mi∆i

}
d−→ N (0,Σ).
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This fact, Lemma 1.4, and (30d) together yield

lim
k→∞

E

[∥∥∥∥∥
k∑

i=1

1√
k
Mi∆i

∥∥∥∥∥
2

]
= σ̃ <∞,

where σ̃ := E[∥X∥2] for X ∼ N (0,Σ). Therefore,

lim
k→∞

1
kE

[∥∥∥∥∥
k∑

i=1

Mi∆i

∥∥∥∥∥
2

]
=

(
lim
k→∞

1√
k

)(
lim
k→∞

E

[∥∥∥∥∥ 1√
k

k∑
i=1

Mi∆i

∥∥∥∥∥
2

])
= 0,

which gives the desired result (31).
The previous lemma allows us to prove the following theorem. We remark upfront that the iteration index

k ∈ N that is used in the definition of {Y avg
k }∞

k=k
in the theorem is not necessarily known in advance by

the algorithm. In particular, it is not necessarily known by the algorithm when the primal iterate sequence
may be guaranteed to have entered a neighborhood of a primary stationary point such that the conditions
of Assumption 4.1 hold with a certain ϵ ∈ R>0. A stronger assumption would be to assume that k = 1, i.e.,
that the algorithm is initialized at a point within a sufficiently small neighborhood of x⋆ in which it remains
almost surely. However, we state the result for general k for the sake of generality, and since in practice it
would be reasonable to consider a scheme that only computes an averaged Lagrange multiplier estimate over
those recent multipliers such that the corresponding primal iterates are within a prescribed neighborhood of
the current iterate. We consider such a strategy in our experiments in Section 5.

Theorem 4.2. Suppose that Assumptions 2.1, 2.2, 2.3, 2.4, and 4.1 hold, (x⋆, y⋆) is a stationary point for
problem (4), ϵ ∈ R>0 is defined as in Assumption 4.1, for some k ∈ N one has almost surely that

∥Xk − x⋆∥2 ≤ ϵ for all k ∈ N with k ≥ k,

{Mk} and {∆k} are defined as in Lemma 4.1, and (30) holds. Then, with Y avg
k := 1

k−k+1

∑k
i=k Yi for all

k ∈ N with k ≥ k, one finds that

lim sup
k≥k,k→∞

E[∥Y avg
k − y⋆∥2] ≤ lim sup

k≥k,k→∞

κy

k−k+1

k∑
i=k

E[∥Xi − x⋆∥2].

Proof. As in the proof of Theorem 4.1, one finds for any k ∈ N with k ≥ k that

∥Y avg
k − y⋆∥2 = 1

k−k+1

∥∥∥∥∥∥
k∑

i=k

(Yi − y⋆)

∥∥∥∥∥∥
2

≤ κHLcr
−2+κ∇fLM

k−k+1

k∑
i=k

∥Xi − x⋆∥2

+ 1
k−k+1

∥∥∥∥∥∥
k∑

i=k

Mi(∇f(x⋆)−∇f(Xk) +∇f(Xk)−Gk)

∥∥∥∥∥∥
≤ κy

k−k+1

k∑
i=k

∥Xi − x⋆∥2 + 1
k−k+1

∥∥∥∥∥∥
k∑

i=k

Mi∆i

∥∥∥∥∥∥
2

, (32)

Thus, under the conditions of the theorem, it follows with Lemma 4.1 that

lim sup
k≥k,k→∞

E[∥Y avg
k − y⋆∥2]
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≤ lim sup
k≥k,k→∞

κy

k−k+1

k∑
i=k

E[∥Xi − x⋆∥2] + lim sup
k≥k,k→∞

1
k−k+1

E

∥∥∥∥∥∥
k∑

i=k

Mi∆i

∥∥∥∥∥∥
2


= lim sup

k≥k,k→∞

κy

k−k+1

k∑
i=k

E[∥Xi − x⋆∥2],

as desired.
The conditions in (30) in Lemma 4.1 are admittedly nontrivial, but upon closer inspection it is not

surprising that conditions akin to these would be needed in order to draw any useful conclusions about an
averaged Lagrange multiplier sequence. First, consider conditions (30a) and (30d), which essentially require
that the expected value of the norm of Mk∆k is bounded uniformly over k ∈ N. Indeed, observe that if one
were instead to assume that

E[∥Mk∆k∥22] <∞ for all k ∈ N, (33)

then (30a) follows directly while one also finds

sup
k∈N

E

∥∥∥∥∥
k∑

i=1

1√
k
Mi∆i

∥∥∥∥∥
2

2

 ≤ sup
k∈N

1
k

k∑
i=1

E
[
∥Mi∆i∥22

]
<∞,

which yields (30d) for Θ = 2. It is not surprising that this expected value would be required to be bounded
uniformly since the elements of {Mk∆k} arise as the error terms in the proof of Theorem 4.2. Second,
beyond merely being bounded, which would not be sufficient on its own, conditions (30b) and (30c) require
convergence properties of {Mk∆k} that match those needed for the multidimensional martingale central limit
theorem, which we have stated as Lemma 1.3. Notice that if one considers the conditions of Assumption 4.1,
which have that the elements of {Mk} are defined by a continuous (in fact, Lipschitz continuous) mapping
M of the elements of {Xk}, then (30b) and (30c) essentially require convergence in probability of averages
of inner and outer products of the elements of {M(Xk)(∇f(Xk)−Gk)}, which is a reasonable assumption

to consider when, say, {Xk}
a.s.−−→ x⋆.

We close this section with the following corollary to Theorem 4.2.

Corollary 4.3. Suppose that the conditions of Theorem 4.2 hold and that the iterate sequence converges
almost surely to x⋆, i.e., {Xk}

a.s.−−→ x⋆. Then,

{Y true
k } a.s.−−→ y⋆ and {Y avg

k }∞
k=k

a.s.−−→ y⋆.

Proof. The almost-sure convergence of {Xk} to x⋆ implies that

P

[
ω ∈ Ω : lim sup

k≥k,k→∞
∥Xk(ω)− x⋆∥2 > 0

]
= 0.

In addition, from (29), one finds for all ω ∈ Ω that

lim sup
k≥k,k→∞

∥Y true
k (ω)− y⋆∥2 ≤ lim sup

k≥k,k→∞
κy∥Xk(ω)− x⋆∥2.

These facts combined with nonnegativity of norms yields

P

[
ω ∈ Ω : lim sup

k≥k,k→∞
∥Y true

k (ω)− y⋆∥2 > 0

]

≤ P

[
ω ∈ Ω : lim sup

k≥k,k→∞
∥Xk(ω)− x⋆∥2 > 0

]
= 0,
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which again with nonnegativity of norms further implies

P

[
ω ∈ Ω : lim sup

k≥k,k→∞
∥Y true

k (ω)− y⋆∥2 = 0

]
= 1

=⇒ P
[
ω ∈ Ω : lim

k≥k,k→∞
∥Y true

k (ω)− y⋆∥2 = 0

]
= 1.

Consequently, {Y true
k }∞

k=k

a.s.−−→ y⋆, so {Y true
k } a.s.−−→ y⋆, as desired.

Let us now consider the averaged sequence. Recall that under the conditions of the corollary one has for
all ω ∈ Ω that

sup
k≥k,k∈N

1√
k−k+1

∥∥∥∥∥∥
k∑

i=k

Mi(ω)∆i(ω)

∥∥∥∥∥∥
2

<∞

=⇒ lim sup
k≥k,k→∞

1
k−k+1

∥∥∥∥∥∥
k∑

i=k

Mi(ω)∆i(ω)

∥∥∥∥∥∥
2

= 0.

Thus, one obtains along with (30d) that

P

ω ∈ Ω : lim sup
k≥k,k→∞

1
k−k+1

∥∥∥∥∥∥
k∑

i=k

Mi(ω)∆i(ω)

∥∥∥∥∥∥
2

= 0


≥ P

ω ∈ Ω : sup
k≥k,k∈N

1√
k−k+1

∥∥∥∥∥∥
k∑

i=k

Mi(ω)∆i(ω)

∥∥∥∥∥∥
2

<∞

 = 1.

Thus, there exists a null (possibly empty) set Ω0 ⊂ Ω such that

lim sup
k≥k,k→∞

1
k−k+1

∥∥∥∥∥∥
k∑

i=k

Mi(ω)∆i(ω)

∥∥∥∥∥∥
2

= 0 for all ω ∈ Ω \ Ω0. (34)

On the other hand, {Xk}
a.s.−−→ x⋆ implies {∥Xk − x⋆∥2}

a.s.−−→ 0. Thus, there exists a null (possibly empty)
set Ω1 ⊂ Ω such that

lim sup
k≥k,k→∞

1
k−k+1

k∑
i=k

∥Xi(ω)− x⋆∥2 = 0 for all ω ∈ Ω \ Ω1. (35)

Then, recall from (32) that for all ω ∈ Ω one finds

lim sup
k≥k,k→∞

∥Y avg
k (ω)− y⋆∥2

≤ lim sup
k≥k,k→∞

 κy

k−k+1

k∑
i=k

∥Xi(ω)− x⋆∥2 + 1
k−k+1

∥∥∥∥∥∥
k∑

i=k

Mi(ω)∆i(ω)

∥∥∥∥∥∥
2

 ,

which along with the fact that Ω0 and Ω1 are null sets, (34), and (35) implies

P

[
ω ∈ Ω : lim sup

k≥k,k→∞
∥Y avg

k (ω)− y⋆∥2 = 0

]
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= P

[
ω ∈ Ω \ (Ω0 ∪ Ω1) : lim sup

k≥k,k→∞
∥Y avg

k (ω)− y⋆∥2 = 0

]

≥ P

[
ω ∈ Ω \ (Ω0 ∪ Ω1) : lim sup

k≥k,k→∞

(
κy

k−k+1

k∑
i=k

∥Xi(ω)− x⋆∥2

+ 1
k−k+1

∥∥∥∥∥
k∑

i=k

Mi(ω)∆i(ω)

∥∥∥∥∥
2

)
= 0

]
= 1,

Combined with nonnegativity of norms, it follows that

P
[
ω ∈ Ω : lim

k≥k,k→∞
∥Y avg

k (ω)− y⋆∥2 = 0

]
= 1,

which further implies that {Y avg
k }∞

k=k

a.s.−−→ y⋆, as desired.

5 Numerical demonstrations

In this section, we provide the results of a small set of numerical experiments to demonstrate the results of
our theoretical analysis. Specifically, we show when solving each instance in a set of test problems that the
primal iterates generated by an implementation of Algorithm 1 approach a primal stationary point (in fact,
a global minimizer), and as this occurs one finds that the true Lagrange multiplier sequence converges and
averaged Lagrange multiplier sequences converge despite the fact that the sequence of Lagrange multipliers
itself does not converge (due to gradient errors). This behavior of the algorithm is representative of behavior
that we have witnessed when solving other problems (not shown due to space considerations) as well. In
terms of averaged Lagrange multipliers, we consider averages over all iterations as well as averages determined
through practical strategies that attempt to ignore multipliers obtained at primal iterates that are far from
a primal stationary point (or at least the current iterate generated by the algorithm).

For our numerical demonstrations, we consider constrained logistic regression; see also [2]. In particular,
we consider problem instances of the form

min
x∈Rn

1
N

N∑
i=1

log(1 + e−γid
T
i x) s.t. Ax = b, ∥x∥22 = 1,

where D = [d1 · · · dN ] ∈ Rn×N is a feature matrix, γ ∈ RN is a label vector, A ∈ Rm×n, and b ∈ Rm.
This problem is nonconvex due to the nonlinear constraint ∥x∥22 = 1, although we confirmed in all runs that
the primal iterates approach the globally optimal solution; see below. For the feature matrices and label
vectors, we considered four datasets from LIBSVM [13], namely, a9a ((n,N) = (123, 32561)), australian
((n,N) = (14, 690)), ionosphere ((n,N) = (34, 351)), and splice ((n,N) = (60, 1000)). These datasets
were selected as ones that led to relatively large errors in the stochastic gradient estimates. (See below for
further information about how the gradient estimates were computed in our experiments.) For each problem
instance, we choose m = 10 and randomly generated the initial point x1 and constraint data (A, b), keeping
these quantities fixed for all runs for a given problem instance. Specifically, each entry of these quantities
was drawn from a standard normal distribution and it was confirmed in each case that A had full row rank.

For the implementation of Algorithm 1, we used the Matlab implementation for [3] known as StochasticSQP.1

For simplicity, we set hk as the identity matrix I for all iterations in all runs of the algorithm. We solved each
linear system (9) with Matlab’s built-in mldivide(\) function, which in particular meant that—as would
be recommended in general for implementations of the algorithm—all Lagrange multipliers were computed
directly from this linear system, not by computing a null space basis Zk. We chose βk = O( 1

k ) with β1 = 1.

1https://github.com/frankecurtis/StochasticSQP
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Figure 1: Distances of primal iterates and Lagrange multiplier estimates to solution values over runs of
Algorithm 1 to solve constrained logistic regression problems defined using four LIBSVM datasets.

For each problem instance, to obtain (x⋆, y⋆), we initially ran StochasticSQP with true gradients in all
iterations until a stationary point was found to high accuracy, then verified that at these points both first-
and second-order stationary conditions held to high accuracy, thus verifying (approximate) global optimality
of the final iterate. Then, for each instance, we ran StochasticSQP with mini-batch gradient estimates
with mini-batch sizes of 16 to generate {(xk, yk, y

true
k )}. (For each run, the sequence {βk} was chosen as

an unsummable, yet square-summable sequence that was tuned in a manner such that the primal iterates
tended toward the globally optimal primal solution.) We verified that in all runs the adaptive parameter
rules implemented in StochasticSQP kept the merit parameter sequence {τk} constant at the initial value of
0.1 and kept the ratio parameter sequence {ξk} constant at the initial value of 1.0; hence, the runs respected
the simplified variant of the algorithm from [3] that we have analyzed as Algorithm 1.

The results for each problem instance are shown in Figure 1. Each plot in the figure shows the results
of a single run with a budget of k = 105 iterations, although we verified that the results were qualitatively
consistent in other runs (with different random seeds) as well. In each plot, the figure shows the sequences
{∥xk − x⋆∥2}, {∥yk − y⋆∥2}, and {∥ytruek − y⋆∥2}, where the quantities xk, yk, and ytruek are defined as in
the prior sections. The figure also shows the sequences {∥yavgk − y⋆∥2} and {∥yavgϵ

k − y⋆∥2} for a few values
of ϵ ∈ R>0, where yavgk is the averaged Lagrange multiplier over all iterations (from the initial point) whereas
y
avgϵ

k is the averaged Lagrange multiplier over iterations {k′, . . . , k}, where for each k ∈ N the index k′ is the
smallest value in [k] such that ∥xj − xk∥2 ≤ ϵ for all j ∈ {xk′ , . . . , xk}. In this manner, for relatively large
values of ϵ, the average is likely to be taken over more iterations (thus reducing noise), whereas for relatively
small values of ϵ, the average is taken only over iterations in which the primal point is relatively close to the
current primal iterate (to improve accuracy of the estimate as xk nears x⋆).

Figure 1 demonstrates the results of our theoretical analysis. In each run, within the iterations performed
before the computational budget was exceeded, the distance of the primal iterate to the primal solution
typically reduces monotonically (due to the tuned step-size sequence, as mentioned). Thus, the run provides
an instance in which the primal iterates appear to converge despite the use of stochastic gradient estimates.
At the same time, the distance of the Lagrange multiplier estimate to the optimal Lagrange multiplier
oscillates between relatively large values due to the errors in the stochastic gradient estimates, whereas the
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distances of true and averaged Lagrange multiplier estimates reach much smaller values. Since the true
Lagrange multiplier estimates are unobtainable in practice, one finds that averaged Lagrange multipliers
may be considered to obtain better estimates than the {yk} sequence itself. In some cases, averaging over
all iterations may be sufficient, but if desired one may consider choosing ϵ ∈ R>0 (tuning the value, if
computationally feasible) and considering a sequence such as {yavgϵ

k } instead.

6 Conclusion

We have presented new convergence analyses for a stochastic SQP method built on the stochastic gradient
methodology. In particular, for a simplified variant of the algorithm from [3], we have proved almost-sure
convergence guarantees for the primal iterates, Lagrange multiplier estimates, and stationarity measures. It
has been shown that the error in the Lagrange mutipliers is bounded by the distance of the primal iterate
to a primal stationary point plus the error due to stochastic gradient estimate. Furthermore, under modest
assumptions, the latter error can be shown to vanish by incorporating a running average of the Lagrange
multipliers. The results of numerical experiments demonstrate our proved theoretical guarantees.
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[9] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

[10] Richard H. Byrd and Jorge Nocedal. An analysis of reduced Hessian methods for constrained optimiza-
tion. Mathematical Programming, 49:285–323, 1990.

[11] Richard H. Byrd and Robert B. Schnabel. Continuity of the null space basis and constrained optimiza-
tion. Mathematical Programming, 35:32–41, 1986.

[12] Antonin Chambolle and Thomas Pock. On the ergodic convergence rates of a first-order primal–dual
algorithm. Mathematical Programming, 159(1-2):253–287, 2016.

[13] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2(3):1–27, 2011.

[14] Kai Lai Chung. A Course in Probability Theory, Revised Edition., volume 3rd ed. Academic Press,
2001.

[15] Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, and
Francesco Piccialli. Scientific machine learning through physics-informed neural networks: Where we
are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

[16] Frank E. Curtis, Michael J. O’Neill, and Daniel P. Robinson. Worst-case complexity of an SQP
method for nonlinear equality constrained stochastic optimization. Mathematical Programming, 2023.
https://doi.org/10.1007/s10107-023-01981-1.

[17] Frank E. Curtis, Daniel P. Robinson, and Baoyu Zhou. Sequential quadratic optimization for stochas-
tic optimization with deterministic nonlinear inequality and equality constraints. arXiv e-prints,
arXiv:2302.14790, 2023.

[18] Richard Durrett. Probability: Theory and Examples. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 5th edition, 2019.

[19] Yuchen Fang, Sen Na, Michael W. Mahoney, and Mladen Kolar. Fully stochastic trust-region
sequential quadratic programming for equality-constrained optimization problems. arXiv e-prints,
arXiv:2211.15943, 2022.

[20] Peter Hall and Christopher C. Heyde. Martingale Limit Theory and Its Application. Academic Press,
2014.

[21] Xin Jiang and Lieven Vandenberghe. Bregman three-operator splitting methods. Journal of Optimiza-
tion Theory and Applications, 196(3):936–972, 2023.

[22] George E. Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[23] F.-S. Kupfer and Ekkehard W. Sachs. Numerical solution of a nonlinear parabolic control problem by
a reduced SQP method. Computational Optimization and Applications, 1(1):113–135, 1992.

[24] Tiejun Li, Tiannan Xiao, and Guoguo Yang. Revisiting the central limit theorems for the SGD-type
methods. arXiv e-prints, arXiv:2207.11755, 2023.

[25] Don L. McLeish. Dependent central limit theorems and invariance principles. The Annals of Probability,
2(4), 1974.

[26] Sen Na, Mihai Anitescu, and Mladen Kolar. An adaptive stochastic sequential quadratic programming
with differentiable exact augmented Lagrangians. Mathematical Programming, 199(1-2):721–791, 2023.

23



[27] Sen Na, Mihai Anitescu, and Mladen Kolar. Inequality constrained stochastic nonlinear op-
timization via active-set sequential quadratic programming. Mathematical Programming, 2023.
https://doi.org/10.1007/s10107-023-01935-7.

[28] Sen Na and Michael W. Mahoney. Asymptotic convergence rate and statistical inference for stochastic
sequential quadratic programming. arXiv e-prints, arXiv:2205.13687, 2022.

[29] Yurii Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127–
152, 2005.

[30] Figen Oztoprak, Richard Byrd, and Jorge Nocedal. Constrained optimization in the presence of noise.
arXiv e-prints, arXiv:2110.04355, 2021.

[31] B. T. Polyak. Gradient methods for minimization of functionals. USSR Computational Mathematics
and Mathematical Physics, 3(3):643–653, 1963.

[32] Boris T. Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4):838–855, 1992.

[33] Songqiang Qiu and Vyacheslav Kungurtsev. A sequential quadratic programming method for optimiza-
tion with stochastic objective functions, deterministic inequality constraints and robust subproblems.
arXiv e-prints, arXiv:2302.07947, 2023.

[34] Tyrone Rees, H. Sue Dollar, and Andrew J. Wathen. Optimal solvers for PDE-constrained optimization.
SIAM Journal on Scientific Computing, 32(1):271–298, 2010.

[35] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951.

[36] Herbert Robbins and David Siegmund. A convergence theorem for non-negative almost supermartingales
and some applications. In Optimizing Methods in Statistics, pages 233–257. Elsevier, 1971.
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