Blindfolded Attackers Still Threatening:
Strict Black-Box Adversarial Attacks on Graphs

Jiarong Xu', Yizhou Sun?, Xin Jiang?, Yanhao Wang!, Chunping Wang?, Jiangang Lu' and
Yang Yang'*

1Zhejiang University, 2University of California, Los Angeles, *FinVolution Group
{xujr, wangyanhao, lujg, yangya} @zju.edu.cn, yzsun@cs.ucla.edu, jiangxjames @ucla.edu, wangchunping02 @xinye.com

Abstract

Adversarial attacks on graphs have attracted considerable re-
search interests. Existing works assume the attacker is either
(partly) aware of the victim model, or able to send queries to it.
These assumptions are, however, unrealistic. To bridge the gap
between theoretical graph attacks and real-world scenarios,
in this work, we propose a novel and more realistic setting:
strict black-box graph attack, in which the attacker has no
knowledge about the victim model at all and is not allowed to
send any queries. To design such an attack strategy, we first
propose a generic graph filter to unify different families of
graph-based models. The strength of attacks can then be quan-
tified by the change in the graph filter before and after attack.
By maximizing this change, we are able to find an effective
attack strategy, regardless of the underlying model. To solve
this optimization problem, we also propose a relaxation tech-
nique and approximation theories to reduce the difficulty as
well as the computational expense. Experiments demonstrate
that, even with no exposure to the model, the Macro-F1 drops
5.5% in node classification and 29.5% in graph classification,
which is a significant result compared with existent works.

1 Introduction

Graph-based models, including graph neural networks
(GNNs) (Kipf and Welling 2017; Velickovié et al. 2018) and
various random walk-based models (Lovasz 1993; Perozzi,
Al-Rfou, and Skiena 2014), have achieved significant success
in numerous domains like social network (Pei, Chakraborty,
and Sycara 2015), bioinformatics (Gilmer et al. 2017), fi-
nance (Paranjape, Benson, and Leskovec 2017), etc. How-
ever, these approaches have been shown to be vulnerable
to adversarial examples (Jin et al. 2020), namely those that
are intentionally crafted to fool the models through slight,
even human-imperceptible modifications to the input graph.
Therefore, adversarial attack presents itself as a serious se-
curity challenge, and is of great importance to identify the
weaknesses of graph-based models.

Over recent years, extensive efforts have been devoted
to studying adversarial attacks on graphs. According to the
amount of knowledge accessible to the attacker, we summa-
rize five categories of existing works in Table 1. As the first
attempt, white-box attack assumes the attacker has full access

*Corresponding author.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Information =~ White- Gray- Restricted Black- Strict

accessible box box black-box box black-box
Model parameters \/ X X X X
Labels N4 v X X X
Queries Vv X x v X
Model structure ~ / O O X X

Table 1: Different graph adversarial attacks, categorized by
whether the attacker has full (\/), limited (O), or no (x)
access to the model.

to the victim model (Wu et al. 2019; Xu et al. 2019a; Chen
et al. 2018; Wang et al. 2018). Then gray-box attack is pro-
posed, in which the attacker trains a surrogate model based
on limited knowledge of the victim as well as task-specific
labeled data (Ziigner, Akbarnejad, and Giinnemann 2018;
Ziigner and Gilinnemann 2019). However, most real-world
networks are unlabeled and it is arduously expensive to ob-
tain sufficient labels, which motivates the study of (restricted)
black-box attacks. With no access to the correct labels, re-
stricted black-box attack shows its success but still needs
limited knowledge of the victim model (Chang et al. 2020).
Comparatively, the black-box model is not aware of the vic-
tim model, but has to query some or all examples to gather
additional information (Dai et al. 2018; Yu et al. 2020).

Despite these research efforts, there still exists a consid-
erable gap between the existing graph attacks and the real-
world scenarios. In practice, the attacker cannot fetch even
the basic information about the victim model (like whether
the model is GNN-based or random-walk-based). Moreover,
it is also unrealistic to assume that the attacker can query
the victim model in real-world applications. Such querying
attempts will be inevitably noticed and blocked by the defend-
ers. For example, consider a credit risk model built upon the
user lending network in a commercial bank. This model only
serves the bank’s internal personnel, but is completely un-
available to the public or credit card users. When malicious
users want to improve their credit scores via some attack
strategies, they have no knowledge of the victim model (in-
cluding model structure and parameters) and do not even
have access to queries or labels at all.

In view of the above limits, we propose a new attack strat-
egy, strict black-box graph attack (STACK), which has no
knowledge of the victim model and no access to queries or

labels at all. The design of such attack strategies is nontrivial
due to the following challenges.

* Most existing graph attack strategies are model-specific,
and are not extendable to the strict black-box setting. For
example, the attack designed for the low-pass GNN filter
will inevitable perform badly on a GNN model that covers
almost all frequency profiles because the attacker might
target at some irrelevant bands of frequency. Thereby, the
first challenge is to identify a common cornerstone for
various types of graph-based models.

 Existing works always use model predictions or the feed-
back from surrogate models to quantify the effect of attacks.
However, with no access to the queries and the correct la-
bels, we can neither measure the quality of predictions,
nor refer to a surrogate model. So the second challenge is
the effective quantification and efficient computation of the
strength of graph attacks.

To handle the above challenges, we first propose a generic
graph filter which formulates the key components of various
graph models into a compact form. Then we are able to mea-
sure the strength of attacks by the change of the proposed
graph filter before and after attack. An intuitive but provably
effective attack strategy is to maximize this change within
a fixed amount of perturbation on the original graph. To ob-
tain a suboptimal solution efficiently, we further relax the
objective of this problem to a function of the eigenvalues,
and then show that the relaxed objective can be approximated
efficiently via eigensolution approximation theories. Besides
the reduction in computational complexity, this approxima-
tion technique also captures inter-dependency between edge
flips, which is ignored in previous works (Bojchevski et al.
2019; Chang et al. 2020). In addition, a restart mechanism
is applied to prevent accumulation of approximation errors
without sacrificing the accuracy.

We summarize our major contributions as follows:

* We bring attention to a critical yet overlooked strict black-
box setting in adversarial attacks on graphs.

* We propose a generic graph filter applicable to various
graph models, and also develop an efficient attack strategy
to select adversarial edges.

» Extensive experiments demonstrate that even when the at-
tacker is unaware of the victim model, the Macro-F1 in
node classification drops 5.5% and that of graph classifi-
cation drops 29.5%, both of which are significant results
compared with SOTA approaches.

The success of our STACK method breaks the illusion that
perfect protection for the victim model could block all kinds
of attacks: even when the attacker is totally unaware of the
underlying model and the downstream task, it is still able to
launch an effective attack.

2 Strict Black-box Attacks (STACK)

Let G = (V, E) be an undirected, unweighted graph with the
node set V' = {vy,vs,...,on} and the edge set E € V x V.
The adjacency matrix A of graph G is an N x N symmetric
matrix with elements A;; = 1if {i,j} € E or ¢ = j, and
A;; = 0 otherwise. We also intentionally set the diagonal

elements of A to 1. Denote by D the diagonal degree matrix
with D;; = Zz]\:fl Aij'

Suppose we have a graph model designed for certain down-
stream tasks, e.g., node classification, or graph classification.
The attacker is asked to modify the graph structure and/or
node attributes within a fixed budget such that the perfor-
mance of downstream task degrades as much as possible.
More specifically, we assume that the attacker will add or
delete a limited number of edges from G, resulting in a per-
turbed graph G' = (V, E"). This setting is conventional in
previous works (Chen et al. 2018; Bojchevski et al. 2019;
Chang et al. 2020), and also practical in many scenarios like
link spam farms (Gyongyi and Garcia-Molina 2005), Sybil
attacks (Yu et al. 2006), and etc. Towards more practical
scenarios, we assume the attacker can neither access any
knowledge about the victim model nor query any examples.
We call such attack as the strict black-box attack (STACK) on
graphs. The attacker’s goal is to figure out which set of edges
flips can fool various graph-based victim models when they
are applied to different downstream tasks. The generality of
the proposed attack model is guaranteed by a generic graph
filter, which is introduced in §2.1, and in §2.2 we formulate
an optimization problem for construction of such a model.

2.1 Generic Graph Filter

Without access to any information from victim models and
queries, we need to take into account the common characteris-
tics of various graph-based victim models when designing the
adversarial attack. Thus we propose a generic graph filter S:

S =D “AD e (1)

where a € [0,1] is a given parameter to enlarge the fil-
ter family. Many common choices of graph filters can be
considered as special cases of the generic graph filter S.
For instance, when a = 1/2, the corresponding graph fil-
ter Sgym = DY2AD 2 i symmetric, and used in numer-
ous applications, including spectral graph theory (Chung
1997) and the graph convolutional networks (GCNs) (Kipf
and Welling 2017; Velickovi¢ et al. 2018). Another com-
mon choice of o is & = 1, and the resulting graph filter
Siw = D71 A is widely used in many applications related to
random walks on graphs; see, for example, (Chung 1997).
Many graph properties, e.g., network connectivity, centrality,
can also be expressed in terms of the proposed generic graph
filter (Lovasz 1993). Furthermore, it is easy to see the rela-
tion between the graph Laplacian (L = D — A) and S, i.e.,
S =1-D *LD~** where the change in S and the change
in D"*L D1 is exactly the same.

The proposed generic graph filter has many interesting
properties. For example, its eigenvalues are invariant under
isomorphic transformations. Consequently, many intrinsic
spectral properties are preserved regardless of the choice of o,
including distances between vertices, graph cuts, the station-
ary distributions of a Markov chain (Cohen et al. 2017)). In
addition, the eigenvalues of S are bounded in [-1, 1]. Hence,
the generic graph filter of the original graph G and that of the
perturbed graph G’ are more comparable from the perspec-
tive of graph isomorphism and spectral properties; see §3 for
more details.

2.2 The Optimization Problem

With the mere observation of the input graph, our attacker
aims to find the set of edge flips that would change the graph
filter .S most. Considering the dependency structure between
the nodes, one adversarial perturbation is easy to propagate
to other neighbors via relational information. Therefore, the
generic graph filter S is used instead of the adjacency ma-
trix A, because the impact of one edge flip on S can properly
depict such cascading effects on a graph. Similar ideas are
conventional in most graph learning models (Chung 1997).
To flip the most influential edges, we formulate our attack
model as the following optimization problem:

maximize £ (A' a) = ||(S' -Gk ||F
subjectto AJ; i=1,...,N o)
A’] € {O 1} forz;t]
| A" = Ao <26,

where the optimization variable is the N x N symmetric
matrix A’. The matrix power S* takes account of all the
neighbors within k hops (instead of those k-hop neighbors)
because A is defined to include self-loops. When targeting
on localized kernels (e.g., GCN), we prefer k£ = 1 or 2, while
a larger k is recommended to capture higher-order structural
patterns. The last inequality constraint shows the budget §
with 0 < § < |E|, which is consistent with most previous
works (Jin et al. 2020; Dai et al. 2018). The left part of
Figure 1 gives an example of the proposed problem.

3 Methodology

The formulation of Problem (2) is not ideal for our purpose.
First, the objective £1(A’,) is affected by the choice of «.
This would hurt the generality of our model as we seek for a
unified black-box attack strategy. Moreover, the evaluation of
the objective function involves a costly eigenvalue decompo-
sition, which in turn makes the whole problem expensive to
solve. Therefore, in this section, we aim to find a sub-optimal
solution to Problem (2), with a reasonable computation ex-
pense. This process is illustrated in Figure 1. In §3.1 we relax
the original objective to a lower bound, which only involves
the spectrum of graph filter; this corresponds to the upper-
right part of Figure 1. Then, we give an approximate solution
to compute the perturbed spectrum in §3.2, as shown in the
lower right corner of Figure 1. A detailed description of how
to select adversarial edges is provided in §3.3 for solving the
relaxed problem. Finally, in §3.4 we show that our model is
flexibly extendable when more information is available.

3.1 A Viable Lower Bound for £

Although the objective function £1(A’;) directly shows the
difference between the original graph filter and the perturbed
one, it has one significant drawback: the objective £1(A’; &)
is affected by the parameter « in S. This means that different
choices of « in S will result in different solutions to Prob-
lem (2). This would largely hurt the generalization of our
model as we are in favor of one stable strategy for different
choices of graph filters. Hence, a relaxation for Problem (2)
that is immune to the choice of o would be desirable.

To find such a relaxation, we first observe that the eigenval-
ues of .S are independent of «, due to the following lemma.

relax to its lower bound max Lo(X) (§3.1)
s Lo X

OfE _ mod mEc 6DE EEN

Q ©
%@g ALR
O O O0E = Omb mECO OO0 BEE

benign adversarial DDD DD. [| o R DDD

example example v g, AR o7
exact generallzed elgensolutlon

.DDQT;@T‘C..D of perturbed graph approx. . .approx.. .approx.
CEN 5 EEE
EROemERO | O00 000, B00EE0 000 EEE
s=peap~* s =pap” OOEFO0OO R OED BED OO0 EEE
® DDD I | A

AA D' U diag{\[,.. Ay} U’
xxCu(A’.r») appronmate eigensolution of perturbed graph 3. 2)

¢2)
overall algorithm (§3.3)

Figure 1: Overview of strict black-box adversarial attacks on
graphs.

Lemma 1.)\ is an eigenvalue of S = D"*AD~*% if and
only if (\,u) solves the generalized eigenproblem Au =
ADu.

With Lemma 1, we are able to construct a convenient lower
bound for L1, involving only the eigenvalues of .S’

Theorem 1. The function L1 (A’; &) is lower bounded by
=Ly(N),

VI 00—\
3)

where \; and N, are the i-th generalized eigenvalue of A
and A', respectively, i.e., Au; = \;Du; and A'u} = \;D'u.
We assume that both eigenvalue sequences are numbered in
a non-increasing order.

L1(A5a) >

Now the problem of maximizing £; (A’; o) can be prop-
erly relaxed to the problem of maximizing its lower bound
Lo(N'). Intuitively, Lo (") is exactly describing the spectral
change, which is a natural measure used in spectral graph
theory (Chung 1997). Additionally, (3) is also valid for any
symmetric matrices S and S’, and hence the lower bound
L5(\") holds for different types of networks (e.g., weighted
or unweighted) and different perturbation scenarios (e.g., ad-
justing edge weights).

3.2 Approximating Perturbed Eigensolution

Although L£2()\') is a desirable lower bound for its flexibility,
its computation remains a great challenge for the following
reasons. First, the computation of £2(\") relies on the eigen-
value decomposition of A’, which costs O(N?) flops. What’s
worse, this decomposition has to be re-evaluated again and
again for every possible set of flipped edges, which turns
out to be a computational bottleneck. Moreover, the inter-
dependency between adversarial edges should be taken into
consideration. For example, the spectral change caused by
flipping two edges e; and e5 is not identical to the sum of
the change caused by flipping e; and that caused by ey. This
difference has been ignored in most studies (Bojchevski et al.
2019; Chang et al. 2020) but might turn out to be critical in
designing adversarial attacks. In this work, however, we fill
this gap by describing such dependency as a combinatorial
optimization problem, which is usually difficult to solve.

To resolve the above issues, we can apply the first-order
eigenvalue perturbation theory (Stewart and Sun 1990) to
approximate L. This approximation is accurate enough for

o RL0 L u@) = e
* TP tm 2wy
@ ® \

Lo (/\(@))0.15 .0 ®©

® @ Eq.(4) ® © ® ®

: ©--@ @

Original graph 9. ® ® u(%‘f;) Eq. (6) uw (%g) o.e
. 8+ ~ Lo (AEEY)) 03 S o

@) ---G)‘(‘%) Eq. (4))‘(%) """"""""" @9 ® 9. .G
o P~ Eq. (6) o ,/; 0.9.9 ; ' 06
©®@--® 0.0 © 4+ ;(%) z ;\L(%g) Lo (/\(%))0-“’ @0 Perturbed graph
00 ® & (%) Eq. (4) (%) -0 ®) f‘ﬁ
| AL w50 e e
©'"® M © u a~ U Lo (A 0.25 ©-“® OO
Candidates @ ¢ . +)\(%) E‘q'\(:))\(%) 2 ((%))

Figure 2: An illustrative example of the proposed attack procedure on graphs, in which the budget constraint 4 is set to be 2.

our purpose because the perturbation on graphs is assumed to
be extremely small, i.e., § << |E|. We start with the simplest
case where only one edge is flipped (Stewart and Sun 1990).
Theorem 2. Let AA = A" — Aand AD = D' — D be the
perturbations of A and D, respectively. Let (i, uy) be the k-
th generalized eigen-pair of A, i.e., Aug = A\ Duy. Assume
these eigenvectors are properly normalized so that ufDui =
1if i = j and O otherwise. When only one edge {p,q} is
flipped, the perturbed k-th generalized eigen-pair can be
approximated by

)\;C ~)\k + Aqu(2Ukp . ukq - Ak(uip + uiq)) (4)
1
uj, ~ (1 - §Aqu (u%p + uiq)) Uk

£y AApg (Uipling + tiqUrp = Ak (WipUkp + Uiglkg)) w
itk Ak = A

&)
where uyy, is the p-th entry of the vector uy,.

For one edge flip, the approximation of the eigenvalue A},
requires only O(1) flops to compute (cf., Eq. (4)). By ig-
noring dependency among adversarial edges, some previous
works directly adopt Theorem 2 to approximate the spectrum
change caused by each edge flip and choose the edges with
the highest spectral impact to perturb (Bojchevski et al. 2019;
Chang et al. 2020). To explore and utilize such dependency,
we update the eigenvalues and eigenvectors after each edge
flip, and then choose the subsequent edge flips based on the
updated eigensolutions. However, the computational cost as-
sociated with re-evaluating the eigenvectors via Eq. (5) is
still too high (O(NN?) flops for each). What’s worse, Eq. (5)
is valid only when all eigenvalues are distinct, which is not
guaranteed in practice. Therefore, inspired by the power iter-
ation, we propose the following theorem to approximate the
perturbed eigenvectors.

Theorem 3. Ler AA = A’ — A and AD = D' - D denote
the perturbations of A and D, respectively. Moreover, the
number of non-zero entries of AA and AD are assumed to
be much smaller than that of A and D. Let uy, be the k-th
generalized eigenvector of A with generalized eigenvalue \y.
We first assume that the eigenvectors are properly normalized

(2

so that ||ug |2 = 1. The k-th generalized eigenvector v}, can
then be approximated by
AC
7uk’ lf)\k + 0
U~ | Ak ©)
k™ AOuk f>\ 0
TA A~ 4 v =)
|ACus]> '
where AC = (D + AD) (A + AA) — D' A. Specifically,
when one edge {p,q} is flipped, only the p-th and q-th ele-
ments of uj, will be changed because only specific elements
of AC are non-zero, i.e.,

ALl Dy = Api | Dpp, if j € N(p) U{p, ¢}
ACij: A;j/D;q_qu/Dq(y U“JEN(Q)U{pvq}
0, otherwise,

sign(A\)ug +

where N (p) indicates the set of neighbors of node p.

When only one edge is flipped, Eq. (6) suggests that the
approximation of the perturbed eigenvector requires only
O(N) flops for each, which is far more efficient than O(NN?)
utilizing Eq. (5). In addition, the evaluation of u} in Eq. (6)
involves only the k-th eigenvalue A\, which removes the
strict assumption regarding distinct eigenvalues.

3.3 Generating Adversarial Edges

Up to this point, we have aimed to flip § edges so that Lo (\)
is maximized. Specifically, we first form a candidate set by
randomly sampling several edge pairs, as in (Bojchevski et al.
2019). Our attack strategy involves three steps: (i) for each
candidate, compute its impact Lo (\) on the original graph,
such that the eigenvalues can be approximated via Eq. (4);
(ii) flip the candidate edge that scores highest on this metric;
and (iii) recompute the eigenvalues (Eq. (4)) and eigenvectors
via Eq. (6) after each time an edge is flipped. These steps
are repeated until 0 edges have been flipped. Figure 2 briefly
illustrates such adversarial attack procedure.

Restart mechanism. In the above strategy, the approxima-
tion of the statistic in step (iii) is efficient. However, it in-
evitably leads to serious error accumulation as more edges
are flipped. A straightforward solution is to reset the aggre-
gated error (i.e., recompute the exact eigensolutions) over

periodic time. Thus, the question of when to restart should
be answered carefully. Recall that in Theorem 2, the per-
turbed eigenvectors must be properly normalized so that
(u})" D'u! = 1. Thus, we can perform an orthogonality check
to verify whether the eigenvectors have been adequately ap-
proximated. Theoretically, if the perturbed eigenvectors are
accurate enough and normalized properly, then U’'" D'U’ (u/
is one column of U’) will be close to the identity matrix.
Thus, we propose to use the average of the magnitudes of the
non-zero off-diagonal terms of M = (U’)" D'U’ to infer the
approximation error of the perturbed eigenvectors:

1 N

€= —— M;;l. 7
The smaller value of € we get, the more accurate our approxi-
mation is. Thereby, the approximation error € is monitored
in every iteration, and restart is performed when the error
exceeds a threshold 7. This restart technique ensures approx-
imation accuracy and also reduces time complexity.

3.4 Extension to Different Knowledge Levels

Our proposed adversarial attack can also be easily extended
to boost performance when additional knowledge (e.g., model
structure, learned parameters) is available. One straightfor-
ward way of doing this would be adopt L5 (\') as a regu-
larization term. Thereby, complementary to other types of
adversarial attacks (e.g., white- or gray-box), the proposed
attack model facilitates rich discrimination on global changes
in the spectrum.

As an example of the extension to gray-box attack, as-
sume our goal is to attack a GNN designed for the semi-
supervised node classification task. The attacker is able to
alter both the graph structure and the node attributes, and
its goal is to misclassify a specific node v;. In this case, a
surrogate model is built with all non-linear activation func-
tion removed (Ziigner, Akbarnejad, and Giinnemann 2018);
this is denoted as Z = softmax(.S* X W), where X denotes
the feature matrix and W represents the learned parameters.
Therefore, the combined attack model tries to solve the fol-
lowing optimization problem:

maximize rriax((S'kX'W)vic — (8" XW)ey) +7L2 (N)
CFCo

where the variables are the graph structure A" and the feature
matrix X', the scalar ¢ denotes the true label or the predicted
label for v; based on the unperturbed graph G, while c is the
class of v; to which the surrogate model assigns. The constant
v > 0 is a regularization parameter. Note that this case can
also be considered as an extension to targeted attack.

4 Experiments

In this section, we evaluate the performance of the proposed
method on both node classification and graph classification
task. We also extend our model to white-box or targeted
attacks, as explained in §3.4. In addition, we study the gap
between the initial formulation (2) and the relaxed problem.

4.1 Experimental Setup

Datasets. For node-level attacks, we adopt Cora-ML, Cite-

seer and Polblogs for node classification task, and follow the

preprocessing in (Dai et al. 2018). We additionally adopt a

real-world mobile network built upon call logs provided by

China Telecom, which consists 34,210 nodes and 187,845

edges. We obtain users’ demographic information as node

attributes, and label a user as the fraudster if he/she was

reported in Baidu or Qihoo 360.

Baselines. We consider the following baselines.

* Rand.: this method randomly flips edges.

* Deg./Betw./Eigen. (Bojchevski et al. 2019): the flipped
edges are selected in the decreasing order of the sum of the
degrees, betweenness, or eigenvector centrality.

e DW: a black-box attack method designed for Deep-
Walk (Bojchevski et al. 2019).

* GF-Attack: targeted attack under the strict black-box set-
ting (Chang et al. 2020). We directly adopt it under our
untargeted attack setting by selecting the edge flips on the
decreasing order of the loss for SGC/GCN.

* GPGD (Graph Projected Gradient Descent): we apply the
GPGD algorithm (Xu et al. 2019a) to solve Problem (2).

* STACK-r-d: a variant of our method, where both the restart
mechanism and the dependency among edge flips are not
considered here. Specifically, the edge flips are selected on
the decreasing order according to Eq. (4) in Theorem 2.

(Unattacked) ~Rand. Deg. Betw. Eigen. DW GF-Attack GPGD STACK-r-d STACK-r STACK White-box

GCN 0.82+0.8 [1.97+0.8 1.12+0.4 1.22+0.4 0.28+0.3 0.85+0.3 1.34+0.5 4.22+0.6 4.03+0.6 5.02+0.4 5.27+0.3|11.36+0.5

Cora-ML Node2vec 0.79+0.8 |6.37+1.8 5.40+1.6 3.33+1.0 2.84+1.0 3.25+1.3 5.76+1.5 533+1.8 5.82+1.7 6.92+1.0 8.29+1.0((1.43+0.9)
Label Prop. 0.80+0.7 [4.10+1.3 2.45+0.7 2.71+0.8 2.07+0.7 1.79+0.9 3.18+0.5 4.28+1.6 5.01+0.7 6.02+0.9 7.13+0.9|(1.05+1.0)

GCN 0.66+£1.4 [2.02+0.6 0.16+£0.4 0.70+0.4 0.64+0.4 0.21+0.4 1.36+0.7 2.14+0.9 2.63+0.7 3.16+0.6 3.98+0.5| 6.42+0.6

Citeseer Node2vec 0.60+1.5 |7.47+2.3 7.47+1.6 3.47+2.6 4.87+1.5 2.54+2.5 6.45+3.5 5.26+1.9 7.94x+1.6 8.32+2.5 9.32+2.6|(0.12+1.0)
Label Prop. 0.64+0.8 |6.70+2.0 3.47+0.8 6.00+1.7 5.36+0.6 3.00+0.8 6.99+1.0 5.14+1.9 6.66+1.3 7.79+0.9 8.16+0.9|(2.47+1.2)

GCN 0.96+£0.7 [1.91+1.5 0.03+0.2 1.72+0.6 0.67+0.5 0.01+0.4 1.15+0.4 2.35+1.8 3.06+1.2 4.30+1.2 5.32+1.1] 3.88+1.1

Polblogs Node2vec 0.95+0.3 |3.01+0.7 0.04+0.6 3.07+0.6 1.84+0.3 0.18+0.4 1.00+0.5 2.49+0.6 2.57+0.9 2.74+0.5 3.79+0.5|(2.13+0.4)
Label Prop. 0.96+0.5 [4.99+0.7 0.08+0.4 3.45+0.7 2.15+0.3 0.37+0.5 2.18+0.4 4.15+0.8 5.17+0.8 5.84+0.7 6.14+0.7|(2.28+0.5)

GCN 0.80+0.9 [1.90+1.4 1.22+0.5 1.23+0.4 0.94+0.5 0.97+0.4 1.90+0.5 2.89+1.0 3.03+1.3 3.96+1.2 4.24+1.2| 557+1.0

Telecom Node2vec 0.76+0.7 |4.95+1.9 3.70+1.1 2.98+1.0 2.77+1.1 3.01+1.4 5.01£1.5 5.85+1.6 5.77+1.7 5.89+1.6 6.88+1.6|(1.01+0.9)
Label Prop. 0.75+0.5 |4.04+1.9 3.10+0.7 3.87+0.8 2.98+0.8 2.66+0.8 4.45+0.9 5.03+1.1 4.99+1.6 5.07+1.5 5.97+1.5|(1.57+0.9)

Table 2: We apply various node-level attacks to different graphs models and different datasets. We report the decrease in Macro-F1
score (in percent) on the test set after the attack is performed; the higher the better. We also report the Macro-F1 on the unattacked

graph.

Nettack STACK-ext
Rand. Deg. Betw. Eigen. DW GF-Attack GPGD STACK-r-d STACK-r STACK Cora-ML 55.70 (0.53) ~ 59.75 (0.57)
Proteins GIN 9.05 9.31 1250 8.00 1344 1082 949 1148 1281 13.53 gg&zﬂg 653-1461((8)2630)) 655;‘5:((00-2633))
OIS Dyiffpool 24.13 11.27 9.87 11.03 1271 2199 1453 2349 2487 24.88 & 200 -40 ©.
Enpvmes . GIN 327634383475 40.25 3876 3548 3563 3600 3746 39.90 .
YMES Diffpool 38.09 17.48 9.51 17.74 13.55 37.19 2032 38.18 40.18 39.62 Table 4: Extension to Nettack. We report

Table 3: Graph-level attacks against GIN and Diffpool. We report the decrease in the
Macro-F1 score (in percent) on test set. Higher numbers indicate better performance.

e STACK-r: another variant of our method, where the restart
mechanism is not considered here.

Implementation details. For the node classification task,
we choose GCN (Kipf and Welling 2017), Node2vec (Grover
et al. 2016) and Label Propagation (Xiaojin and Zoubin 2002)
as the victim models. We set the training/validation/test split
ratio as 0.1:0.1:0.8, and allow the attacker to modify 10% of
the total edges. Comparatively, GIN (Xu et al. 2019b) and
Diffpool (Ying et al. 2018) are used as victim models in the
graph classification task due to their excellence. We follow
the default setting in the above models, including the split
ratio, and allow the attacker to modify 20% of the total edges.
Throughout the experiment, we follow the strict black-
box setting. We set the spatial coefficient £ = 1 and the
restart threshold 7 = 0.03. The candidate set of adversarial
edges is randomly sampled in every trial, and its size is set
as 20K. As shown in Table 2, this randomness does not
hurt the performance overall. The reported results are all
averaged over 10 trials. Our codes are available at: https:
//github.com/galina0217/stack.

4.2 Experimental Results

Node classification task. Table 2 reports the decrease in
Macro-F1 score (in percent) in node classification for all the
three datasets and three victim models. We can see that our
method performs the best across all datasets. First, heuristics
(Rand., Deg., Betw., and Eigen.) fail to find the most influ-
ential edges in strict black-box setting. Previous works (DW
and GF-Attack) do not perform well either, mainly due to the
blindness to additional information (i.e., model type). The
limit of GPGD is probably attributed to its relaxation from
the binary graph topology to the convex hull. The ablation
study on Ours-r-d and Ours-r further highlights the signifi-
cance of the edge dependencies and the restart mechanism. In
addition, the last column in Table 2 shows the results of white-
box attacks which applies GPGD for GCN (Xu et al. 2019a),
which shares the same untargeted attack setting as ours, and is
one of the simplest and best-performed white-box approach.
The original paper presents great success when using GCN
as the victim model. But our experiments show the failure
of its intuitive extension to node-embedding models (e.g.,
Node2vec) and diffusion models (e.g., Label Propagation).
Table 5 further shows that under increasing perturbation
rates (5/10/15%), our node-level attacker can do more dam-
age to GCN while still achieves the best performance. Note
that when the perturbation rate is not very high, our solution
without restart is already good enough to mount attacks.

the average decrease in prediction confi-
dence (in percent) of true labels and the
misclassification rate in parentheses.

Graph classification task. Table 3 reports the results in
graph classification. Especially, our method is 2.65% on av-
erage better than other methods in terms of Macro-F1. Inter-
estingly, STACK-r (without restart) sometimes performs well,
indicating that we can apply a version with lower complexity
in practice yet not sacrificing much accuracy.

Attacks on Defensive models. We further validate the ef-
fectiveness of our attacks against three defensive models:
EdgeDrop (Dai et al. 2018), Jaccard (Wu et al. 2019) and
SVD (Entezari et al. 2020). We utilize GCN as the backbone
classifier and test on node classification task. We compare
our method with the strongest competitor GPGD. The ex-
perimental settings are the same as those used in node-level
attack. The results in Table 6 demonstrate that our method
outperforms GPGD in terms of its ability to attack the defen-
sive models. We can see that EdgeDrop cannot effectively
defend against our attack, while the two pre-processing de-
fense approaches (Jaccard and SVD) can defend against our
attack to a certain extent.

Extension when additional knowledge is available. Here
we explore whether our attack can be successfully extended
as the example in §3.4. Specifically, we focus on the Net-
tack model (Ziigner, Akbarnejad, and Giinnemann 2018) and
follow their targeted attack settings. We randomly select 30
correctly-classified nodes from the test set and mount tar-
geted attacks on these nodes. From Table 4, we see that the
naive extension of our method can further drop 4.84% in
terms of prediction confidence and increase 4.18% in terms
of misclassification rate on average.

attacke ™M 5% 10% 15% | yaciet o™ 5% 10% 15%
Rand. 075 197 241 GPGD 394 422 5.03
Deg. 059 112 134| GF-Amack 110 134 2.1
Bew. 063 122 145 STACK-rd 390 403 5.11
Eigen. 030 028 1.12| STACK-r 443 502 577
DW 034 085 123| STACK 430 527 6.40

Table 5: Decrease in Macro-F1 score with different perturba-
tion rates when attacking GCN on Cora-ML.

w/o defense EdgeDrop Jaccard SVD

GPGD 4.22 6.04 3.94 347
STACK 5.27 7.11 471 4.02

Table 6: Attack against defensive models on Cora-ML. The
decrease in Macro-F1 score is reported here.

. 10!
Q10! s
G]
g >
=z TP
gm" . g
B W, °
< o <

107°
10~ .
1077 107° 107! 107° 107° 107!
Approximated Value Approximated Value
(a) Erd6s—Rényi (b) Barabdsi—Albert

o 07! o 107!
2 2
g g . e
= 0 = 1077 .
2 2
31 5]
< <

10 10~

we .u}* T 1077 107 107!
Approximated Value Approximated Value

(c) Watts—Strogatz (d) Traid Formation

Figure 3: The true eigenvalues (y-axis) are plotted against
the approximations (x-axis) in log scale. We present our
approximations with (red plus) and without (blue circle) the
restart step.

Cora-ML Citeseer Polblogs

Pearson 0.89 0.91 0.85
Spearman 0.91 0.93 0.93

Table 7: The Pearson and Spearman correlation coefficients
between £, and approximated Lo.

Approximation quality. From the original objective func-
tion £ to our final model, we have made one relaxation and
one approximation; both steps would accumulate errors in
evaluating the original objective. One thing worth noting is
that the estimation error caused by sampling can be ignored
here, as demonstrated in (Bojchevski et al. 2019).

To evaluate the effectiveness of eigen-approximation, we
first generate the following random graphs with 1K nodes:
Erd6s—Rényi (Bollobas 2013), Barabasi—Albert (Albert and
Barabasi 1998), Watts—Strogatz (Watts and Strogatz 1998),
and Triad Formation (Holme and Kim 2002). Then we flip
10 edges in every synthetic graph and compare the true eigen-
values with approximated ones. Figure 3 presents the average
results of 100 repeated experiments, where x-axis denotes
the approximated value, and y-axis indicates the actual value.
The approximate linearity of the plotted red points suggests
the effectiveness of our eigensolution approximation with
restart algorithm (§3.3). As an ablation study, results gener-
ated by our algorithm without the restart step (blue points)
show a tendency of overestimating the change in eigenvalues
before and after attacks.

Furthermore, we study the quality of both the relaxation
and the approximation by examining the gap between £;
and Lo. We compute their Pearson and Spearman correlation
coefficients on three real-world datasets in Table 7. Results
are all close to 1, which indicates a linear correlation between
the original objective £; and the approximation of Ls.

5 Related Work

Deep learning on graphs has been shown to be vulnerable
to noisy or adversarial examples (Jin et al. 2020; Xu et al.
2020b, 2021, 2020a). The setting of graph adversarial attacks

can be classified into white-box, gray-box, restricted black-
box, black-box and strict black-box settings. Getting access
to full knowledge (e.g., model structure and learned parame-
ters) about a victim model, the adversaries generally prefer
white-box attacks (Wu et al. 2019; Xu et al. 2019a; Chen et al.
2018; Wang et al. 2018; Wang and Gong 2019). However, ad-
versaries may not be able to acquire such perfect knowledge,
preventing them from adopting gradient-based algorithms
directly. Gray-box attacks are proposed when the attackers
are usually familiar with the architecture of the victim mod-
els (Chen et al. 2020; Jin et al. 2020). One common method
is to train substitute models as surrogates to estimate the
information of the victim models (Ziigner, Akbarnejad, and
Giinnemann 2018; Ziigner and Giinnemann 2019; Bojchevski
et al. 2019). Despite its tractability, such surrogate models
rely on labels for training and the attack performance suffers
the approximation error of surrogate models. So long as less
information is exposed, the adversaries will have to adopt
restrict black-box attacks or black-box attacks instead. Under
restricted black-box attacks, (Chang et al. 2020) assumes the
family of graph-based models (i.e., GNN-based or sampling-
based) is known and design a graph signal processing-based
attack method. For black-box attacks, the adversaries can
only access the model as an oracle and may query some or all
of the examples to obtain continuous-valued predictions or
discrete classification decisions (Dai et al. 2018). Unlike the
above-mentioned counterparts, our proposed strict black-box
attacks assume the attacker has totally no knowledge of the
victim model and queries, which is a more practical but strict
setting. Besides, another line of work (Ma, Ding, and Mei
2020), not part of the five categories, assumes the victim
model is GNN-based but the training input is partly available,
which is anther view of practical merit.

6 Conclusion

In this paper, we describe a strict black-box setting for ad-
versarial attacks on graphs: The attacker not only has zero
knowledge about the victim model, but is unable to send any
queries as well. To handle this challenging but more realistic
setting, a generic graph filter is proposed to unify different
families of graph models, and the change in the proposed
graph filter is used to quantify the strength of attacks. By max-
imizing this change, we would be able to find an effective
attack strategy. For efficient solution to the problem, we also
propose a relaxation technique and an approximation algo-
rithm. Extensive experiments show that the proposed attack
strategy substantially outperforms other existing methods. Ex-
tension of STACK on node- and attribute-level perturbations
would be interesting research directions.

Acknowledgements. This work was partially supported by NSFC
(62176233), the National Key Research and Development Project of
China (2018AAA0101900), NSF III-1705169, Okawa Foundation
Grant, Amazon Research Awards and Picsart gift. Jiarong Xu’s work
is supported by NSFC (71531006), the Major Scientific Project of
Zhejiang Laboratory (2020MCOAEOQ1), the Fundamental Research
Funds for the Central Universities (Zhejiang University New Gener-
ation Industrial Control System (NGICS) Platform) and the Zhejiang
University Robotics Institute (Yuyao) Project (K12001).

References

Albert, R.; and Barabasi, A.-L. 1998. Statistical Mechanics
of Complex Networks. Nature, 393(6684): 440-442.

Bojchevski, A.; et al. 2019. Adversarial Attacks on Node
Embeddings via Graph Poisoning. In ICML, 695-704.

Bollobas, B. 2013. Modern graph theory. Springer Science
and Business Media.

Chang, H.; Rong, Y.; Xu, T.; Huang, W.; Zhang, H.; Cui, P;;
Zhu, W.; and Huang, J. 2020. A Restricted Black-Box Ad-
versarial Framework Towards Attacking Graph Embedding
Models. In AAAI, 3389-3396.

Chen, J.; Wu, Y.; Xu, X.; Chen, Y.; Zheng, H.; and Xuan, Q.
2018. Fast Gradient Attack on Network Embedding. ArXiv.
Chen, L.; Li, J.; Peng, J.; Xie, T.; Cao, Z.; Xu, K.; He, X.;
and Zheng, Z. 2020. A Survey of Adversarial Learning on
Graphs. ArXiv.

Chung, F. R. K. 1997. Spectral graph theory. American
Mathematical Soc.

Cohen, M. B.; Kelner, J.; Peebles, J.; Peng, R.; Rao, A. B.;
Sidford, A.; and Vladu, A. 2017. Almost-Linear-Time Algo-
rithms for Markov Chains and New Spectral Primitives for
Directed Graphs. In STOC, 410—419.

Dai, H.; Li, H.; Tian, T.; Huang, X.; Wang, L.; Zhu, J.; and
Song, L. 2018. Adversarial Attack on Graph Structured Data.
In ICML, 1115-1124.

Entezari, N.; Al-Sayouri, S. A.; Darvishzadeh, A.; and Pa-
palexakis, E. E. 2020. All you need is low (rank) defending
against adversarial attacks on graphs. In WSDM, 169-177.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural Message Passing for Quantum
Chemistry. In ICML, 1263-1272.

Grover, A.; et al. 2016. node2vec: Scalable feature learning
for networks. In SIGKDD, 855-864.

Gyongyi, Z.; and Garcia-Molina, H. 2005. Link spam al-
liances. In VLDB, 517-528.

Holme, P.; and Kim, B. J. 2002. Growing Scale-Free Net-
works with Tunable Clustering. Physical review E, 65(2):
026107.

Jin, W,; Li, Y.; Xu, H.; Wang, Y.; and Tang, J. 2020. Ad-
versarial Attacks and Defenses on Graphs: A Review and
Empirical Study. ArXiv.

Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Classifi-
cation with Graph Convolutional Networks. In ICLR.
Lovasz, L. 1993. Random walks on graphs: A survey. Com-
binatorics, Paul erdos is eighty, 2(1): 1-46.

Ma, J.; Ding, S.; and Mei, Q. 2020. Towards More Practical
Adversarial Attacks on Graph Neural Networks. In NeurIPS,
4756-4766.

Paranjape, A.; Benson, A. R.; and Leskovec, J. 2017. Motifs
in Temporal Networks. In WSDM, 601-610.

Pei, Y.; Chakraborty, N.; and Sycara, K. 2015. Nonnegative
matrix tri-factorization with graph regularization for commu-
nity detection in social networks. In IJCAI, 2083-2089.

Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. DeepWalk:
Online Learning of Social Representations. In SIGKDD,
701-710.

Stewart, G. W.; and Sun, J.-g. 1990. Matrix Perturbation
Theory. Computer Science and Scientific Computing. Boston:
Academic Press.

Velickovié, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P; and Bengio, Y. 2018. Graph attention networks. In ICLR.

Wang, B.; and Gong, N. Z. 2019. Attacking Graph-Based
Classification via Manipulating the Graph Structure. In CCS,
2023-2040.

Wang, X.; Eaton, J.; Hsieh, C.-J.; and Wu, S. F. 2018. At-
tack Graph Convolutional Networks by Adding Fake Nodes.
ArXiv.

Watts, D. J.; and Strogatz, S. H. 1998. Collective Dynamics
of ‘Small-World’” Networks. Nature, 393(6684): 440-442.
Wu, H.; Wang, C.; Tyshetskiy, Y.; Docherty, A.; Lu, K.; and
Zhu, L. 2019. Adversarial Examples for Graph Data: Deep
Insights into Attack and Defense. In IJCAI, 4816-4823.

Xiaojin, Z.; and Zoubin, G. 2002. Learning from labeled
and unlabeled data with label propagation. CMU CALD tech
report CMU-CALD-02-107.

Xu, J.; Yang, Y.; Chen, J.; Jiang, X.; Wang, C.; Lu, J.; and Sun,
Y. 2020a. Unsupervised Adversarially-Robust Representation
Learning on Graphs. ArXiv.

Xu, J.; Yang, Y.; Pu, S.; Fu, Y.; Feng, J.; Jiang, W.; Lu, J.;
and Wang, C. 2021. NetRL: Task-aware Network Denoising
via Deep Reinforcement Learning. IEEE Transactions on
Knowledge and Data Engineering, 1-1.

Xu, J.; Yang, Y.; Wang, C.; Liu, Z.; Zhang, J.; Chen, L.; and
Lu, J. 2020b. Robust Network Enhancement from Flawed
Networks. IEEE Transactions on Knowledge and Data Engi-
neering, 1-1.

Xu, K.; Chen, H.; Liu, S.; Chen, P.-Y.; Weng, T.-W.; Hong,
M.; and Lin, X. 2019a. Topology Attack and Defense for
Graph Neural Networks: An Optimization Perspective. In
IJCAI, 3961-3967.

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019b. How
Powerful Are Graph Neural Networks? In ICLR.

Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W. L.; and
Leskovec, J. 2018. Hierarchical graph representation learning
with differentiable pooling. In NeurIPS, 4805-4815.

Yu, H.; Kaminsky, M.; Gibbons, P. B.; and Flaxman, A. 2006.
Sybilguard: defending against sybil attacks via social net-
works. In SIGCOMM, 267-278.

Yu, S.; Zheng, J.; Chen, L.; Chen, J.; Xuan, Q.; and Zhang, Q.
2020. Unsupervised Euclidean Distance Attack on Network
Embedding. In DSC, 71-77.

Ziigner, D.; Akbarnejad, A.; and Giinnemann, S. 2018. Ad-
versarial Attacks on Neural Networks for Graph Data. In
SIGKDD, 2847-2856.

Ziigner, D.; and Giinnemann, S. 2019. Adversarial Attacks
on Graph Neural Networks via Meta Learning. In ICLR.

