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Semidefinite programs (SDPs)

minimize tr(CX) maximize 〈b,y〉
subject to A(X) = b subject to A∗(y) + S = C

X ∈ Sn
+ S ∈ Sn

+

A a linear mapping from Sn → Rm, and A∗ is its adjoint

Interior-point methods
• general-purpose implementations for dense problems do not scale well
• each iteration involves computations with complexity m3, m2n2, nm3

• customization to exploit problem structure is difficult

Proximal splitting methods (ADMM, primal–dual hybrid gradient, ...)
• exploiting structure in linear constraints is straightforward
• require eigenvalue decompositions for projections on PSD cones
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Sparse semidefinite programs

large SDPs often have sparse coefficient matrices C,A1, . . . ,Am

• applications related to graphs, Euclidean distance geometry
• relaxations of nonconvex quadratic and polynomial optimization

Example: relaxation of maximum-cut problem

maximize tr(LX)
subject to Xii = 1, i = 1, . . . ,m

X � 0

• complexity of general-purpose interior-point solver: O(n4) per iteration
• customized interior-point solver: O(n3) per iteration
• proximal method: O(n3) per iteration (projection on PSD cone)
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Proximal mapping

Proximal mapping: for closed convex function f

proxf (x) = argmin
y

(
f (y) + (1/2)‖x − y‖22

)
Generalized proximal mapping
• use a generalized distance d(x,y) instead of (1/2)‖x − y‖22
• for example, in proximal gradient method of minimizing f (x) + g(x):

xk+1 = argmin
x

(
f (x) + g(xk) + 〈∇g(xk),x − xk〉 + (1/τ)d(x,y)

)
Potential benefits
1. “preconditioning”: use a more accurate model of g(x) around xk

2. make the generalized proximal mapping easier to compute
goals: 1 is to reduce number of iterations; 2 is to reduce cost per iteration
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Bregman distance

Kernel function: φ convex, differentiable on its interior domain

Bregman distance (generalized distance)

d(x,y) = φ(x) − φ(y) − 〈∇φ(y),x − y〉

with domain dom d = dom φ × int dom φ

(y, φ(y))

(x, φ(x))
d(x,y)

Bregman (1967), Censor and Zenios (1997) 6



Generalized proximal mapping

proxd
f (y,a) = argmin

x

(
f (x) + 〈a,x〉 + d(x,y)

)
Requirements for minimizer x:
• existence in int(dom φ) and uniqueness for all y ∈ int(dom φ) and all a

Examples
• squared Euclidean distance: proxd

f (y,a) = proxf (y − a)

• f is indicator for {x ∈ Rn
+ | 1Tx = 1} and d the relative entropy

proxd
f (y,a)i =

yie−ai∑n
j=1 yje−aj

, for i = 1, . . . ,n

used in entropic proximal point method, exponential method of multipliers
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Primal–dual hybrid gradient (PDHG) method

minimize f (x)
subject to Ax = b

f is a closed convex function

Algorithm

yk+1 = zk + θk(zk − zk−1)

xk+1 = argmin
x

(
f (x) + yT

k+1Ax +
1
τk

d(x,xk)
)

zk+1 = zk + σk(Axk+1 − b)

• x-update is evaluation of Bregman proximal operator
• parameters θk, τk, and σk are fixed or determined by line search
• Bregman variant of primal–dual hybrid gradient (Chambolle–Pock)

method [Chambolle & Pock (2016)]
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Sparse semidefinite program

minimize tr(CX) maximize 〈b,y〉
subject to A(X) = b, X ∈ Sn

+ subject to A∗(y) + S = C, S ∈ Sn
+

• C,A1, . . . ,Am are sparse with common sparsity pattern E
• without loss of generality, assume E is chordal (a filled Cholesky pattern)
• optimal X is typically dense, even for sparse coefficients

Equivalent conic linear program

minimize tr(CX) maximize 〈b,y〉
subject to A(X) = b, X ∈ K subject to A∗(y) + S = C, S ∈ K∗

• variable X is a sparse matrix with pattern E (notation: Sn
E)

• primal cone is set of matrices in Sn
E with PSD completion: K = ΠE(Sn

+)

• dual cone is the set of sparse PSD matrices in Sn
E: K∗ = Sn

+ ∩ Sn
E

Fujisawa, Kojima, Nakata (1997) 9



Centering problem

Logarithmic barrier
• φ is conjugate barrier of log-det barrier φ∗(S) = − log det S for K∗

φ(X) = sup
S∈int K∗

(− tr(XS) + log det S)
• optimal ŜX is (sparse) inverse of max-det PSD completion of X

φ(X) = log det ŜX − n, ∇φ(X) = −ŜX

• for chordal E: efficient algorithms for computing ŜX given X
• cost is about the same as sparse Cholesky factorization with pattern E

Centering problem
minimize tr(CX) + µφ(X)
subject to A(X) = b

• solutions for µ > 0 form the central path of the SDP
• optimal X is (µn)-suboptimal for the SDP
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Bregman proximal operator for the centering problem

we formulate a Bregman proximal method for the centering problem

minimize tr(CX) + µφ(X)
subject to A(X) = b

tr X = 1

• centering objective, restricted to tr X = 1 (alternatively, tr X ≤ 1)

f (X) = tr(CX) + µφ(X) + δH(X), H = {X | tr X = 1}

• use Bregman distance generated by φ

X̂ = proxd
f (Y,D) = argmin

X

(
f (X) + tr(DX) + (1/τ)d(X,Y)

)
= argmin

tr X=1
(tr(BX) + φ(X))

where B = (τ(D + C) + ŜY )/(1 + µτ) ∈ Sn
E
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Algorithm for Bregman proximal operator

minimize tr(BX) + φ(X) maximize log det(B + λI) − λ
subject to tr X = 1

• dual variable λ ∈ R is multiplier for tr X = 1
• use Newton’s method to find unique solution λ of the nonlinear equation

tr((B + λI)−1) = 1 (with B + λI � 0)

• from λ, compute solution X̂ as projection ΠE((B + λI)−1) on Sn
E

• for chordal sparsity patterns E, efficient algorithms exist for computing

g(λ) = tr((B + λI)−1), g′(λ) = − tr((B + λI)−2), X̂ = ΠE((B + λI)−1)

from sparse Cholesky factorization of B + λI

complexity ≈ # Newton iterations × cost of sparse Cholesky factorization
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Maximum-cut problem

maximize tr(LX)
subject to diag(X) = 1, X � 0

• compute approximate solution on central path (parameter µ = 0.001/n)
• four problems from SDPLIB, four graphs from SuiteSparse collection

n time per Cholesky
factorization

Newton steps
per iteration

time per PDHG
iteration

PDHG
iterations

maxG51 1000 0.05 2.45 0.12 267
maxG32 2000 0.12 1.56 0.18 240
maxG55 5000 0.29 2.10 0.58 249
maxG60 7000 0.60 2.55 1.22 279
barth4 6019 0.42 3.57 1.55 346
tuma2 12992 0.48 4.36 1.89 375
biplane-9 21701 0.95 2.58 2.12 287
c-67 57975 0.76 3.58 3.56 378
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SDP relaxation of graph partitioning

minimize tr(PTLPX)
subject to diag(PXPT ) = 1, X � 0

• columns of P are sparse basis of {x | 1Tx = 0}
• Bregman PDHG for centering problem (parameter µ = 0.001/n)
• four problems from SDPLIB, four graphs from SuiteSparse

n time per Cholesky
factorization

Newton steps
per iteration

time per PDHG
iteration

PDHG
iterations

gpp100 100 0.01 2.43 0.02 305
gpp124-1 124 0.01 2.00 0.02 392
gpp250-1 250 0.01 2.65 0.03 365
gpp500-1 500 0.02 3.01 0.07 394
delaunay_n10 1024 0.37 4.36 1.76 403
delaunay_n11 2048 0.48 4.70 2.54 420
delaunay_n12 4096 0.60 4.43 3.05 367
delaunay_n13 8192 1.02 4.42 4.98 375
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Summary

Bregman primal–dual first-order method for

minimize f (x)
subject to Ax = b

• main steps are matrix–vector products with A, AT and proxd
f (x,a)

• algorithm parameters are fixed or determined by line search

Applications to centering problem in sparse SDP
• distance generated by logarithmic barrier
• new, efficient algorithm for prox-operator of centering objective
• cost is comparable with cost of sparse Cholesky factorization
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Conversion methods for sparse SDPs

Interior point methods for converted SDPs
• Schur complement systems may be easier to solve
• effective when all the maximal cliques are small

First-order methods for converted SDPs
• examples are DRS, ADMM, dual coordinate descent, etc.
• each step involves evaluation of prox-operator (or projection)
• bottleneck: eigenvalue decompositions for projections onto PSD cone

Drawbacks of conversion methods
• may require large number of consistency constraints
• constructing a feasible solution for original SDP is not trivial

Fukuda et al. (2001), Nakata et al. (2003), SDPA; Zheng et al. (2017, 2019), CDCS, etc. 16



Non-symmetric interior point methods

recall the non-symmetric formulation of sparse SDPs

minimize tr(CX) maximize 〈b,y〉
subject to A(X) = b subject to A∗(y) + S = C

X ∈ K S ∈ K∗

• solve by primal, dual, non-symmetric primal-dual interior point methods
• require efficient evaluation of logarithmic barrier and its derivative
• bottleneck: solving Schur complement system

Burer (2003), Srijuntongsiri et al. (2004), Andersen et al. (2011), Zhang (2018); SMCP 17
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