A globally convergent difference-of-convex algorithmic framework and application to log-determinant optimization problems

Xin Jiang
Institute for Data, Intelligent Systems, and Computation Industrial and Systems Engineering Department Lehigh University

```
joint work with Chaorui Yao (UCLA)
```

Modeling and Optimization: Theory and Applications (MOPTA) August 17, 2023

Difference-of-convex (DC) programming

consider the class of difference-of-convex (DC) optimization problems

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)=g(x)-h(x) \\
\text { subject to } & x \in \mathcal{C}
\end{array}
$$

- g, h are closed, convex, and continuously differentiable
- different assumptions can be posed on \mathcal{C}
- assume optimum is attained at x^{\star}, with finite optimal value f^{\star}

Applications: some problems have an equivalent DC reformulation

- problems with a concave objective
- some bilevel optimization problems
- some nonconvex regularizers have DC reformulation or relaxation

Difference-of-convex algorithm (DCA)

the difference-of-convex algorithm (DCA) is a conceptually simple method

$$
x^{(k+1)} \in \underset{x \in \mathcal{C}}{\operatorname{argmin}}\left(g(x)-\left(h\left(x^{(k)}\right)+\left\langle\nabla h\left(x^{(k)}\right), x-x^{(k)}\right\rangle\right)\right)
$$

it has been studied under various names

- a special case of the majorization-minimization (MM) algorithm
- nonsmooth extension exists ($\nabla h\left(x^{(k)}\right)$ is replaced with a subgradient of h)
- also known as the convex-concave procedure (CCCP)
most research focuses on \mathcal{C} is the entire space or defined by DC functions

Properties and convergence results

- monotonicity of function values: $f\left(x^{(k+1)}\right) \leq f\left(x^{(k)}\right)$ for all $k \in \mathbb{N}$
- DCA converges to a first-order stationary point with an $O(1 / k)$ rate

Tao and Souad (1986)
Yuille and Rangarajan (2003), Sriperumbudur and Lanckriet (2009), Smola et al. (2015)

Motivation and contributions

Running example from network information theory

$$
\begin{array}{ll}
\operatorname{minimize} & -\log \operatorname{det}\left(X+\Sigma_{1}\right)+\lambda \log \operatorname{det}\left(X+\Sigma_{2}\right) \\
\text { subject to } & 0 \preceq X \preceq C
\end{array}
$$

with variable $X \in \mathbb{S}^{n}$; data $\Sigma_{1}, \Sigma_{2} \in \mathbb{S}_{++}^{n}, C \in \mathbb{S}_{+}^{n}, \lambda>1$

- the problem is nonconvex as $\lambda>1$
- the problem has a unique global optimum (Lau, Nair, and Yao (2022))

Motivation and contributions

Running example from network information theory

$$
\begin{array}{ll}
\text { minimize } & -\log \operatorname{det}\left(X+\Sigma_{1}\right)+\lambda \log \operatorname{det}\left(X+\Sigma_{2}\right) \\
\text { subject to } & 0 \preceq X \preceq C
\end{array}
$$

with variable $X \in \mathbb{S}^{n}$; data $\Sigma_{1}, \Sigma_{2} \in \mathbb{S}_{++}^{n}, C \in \mathbb{S}_{+}^{n}, \lambda>1$

- the problem is nonconvex as $\lambda>1$
- the problem has a unique global optimum (Lau, Nair, and Yao (2022))

Contributions

- Global linear convergence of DCA under generalized PL conditions
- Subproblem solver: primal-dual proximal methods with Bregman distances
- Application to several problems in various fields

Outline

Two interpretations of DCA
DCA from Frank-Wolfe algorithm
DCA from Bregman proximal point algorithm

Convergence of DCA to global optimum

Bregman PDHG as subproblem solver

Applications and numerical results

Frank-Wolfe algorithm

consider the canonical optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & \psi(z) \\
\text { subject to } & z \in \mathcal{D}
\end{array}
$$

where \mathcal{D} is closed and convex, and ψ is continuously differentiable

Frank-Wolfe algorithm takes the following iterations

$$
\begin{aligned}
\hat{z} & \in \underset{z \in \mathcal{D}}{\operatorname{argmin}}\left(\left\langle\nabla \psi\left(z^{(k)}\right), z-z^{(k)}\right\rangle\right) \\
z^{(k+1)} & =\left(1-\theta_{k}\right) z^{(k)}+\theta_{k} \hat{z}
\end{aligned}
$$

where $\theta_{k} \in[0,1]$ can be chosen via various techniques

- if ψ is convex or concave, FW converges with an $O(1 / k)$ rate
- if ψ is nonconvex, FW converges to a stationary point with rate $O(1 / \sqrt{k})$

DCA from FW algorithm

- the DC program can be rewritten as

$$
\begin{array}{ll}
\operatorname{minimize} & t-h(x) \\
\text { subject to } & g(x)+\delta_{\mathcal{C}}(x) \leq t
\end{array}
$$

with variables $x \in \mathbb{R}^{d}$ and $t \in \mathbb{R}$

DCA from FW algorithm

- the DC program can be rewritten as

$$
\begin{array}{ll}
\operatorname{minimize} & t-h(x) \\
\text { subject to } & g(x)+\delta_{\mathcal{C}}(x) \leq t
\end{array}
$$

with variables $x \in \mathbb{R}^{d}$ and $t \in \mathbb{R}$

- the \hat{z}-update in FW method linearizes the objective

$$
\begin{aligned}
\hat{z} & \in \underset{z=(x, t) \in \mathcal{D}}{\operatorname{argmin}}\left\langle\nabla \psi\left(z^{(k)}\right), z-z^{(k)}\right\rangle \\
& =\underset{(x, t) \in \mathcal{D}}{\operatorname{argmin}}\left(t-\left\langle\nabla h\left(x^{(k)}\right), x-x^{(k)}\right\rangle\right) \\
& =\underset{x \in \mathcal{C}}{\operatorname{argmin}}\left(g(x)-\left\langle\nabla h\left(x^{(k)}\right), x-x^{(k)}\right\rangle\right),
\end{aligned}
$$

where $\psi(x, t)=t-h(x)$ is concave

- it can be shown that $\theta_{k}=1$ is valid in this case
- previous $O(1 / k)$ convergence result applies

Bregman distance (generalized distance)

$$
d_{\phi}(x, y)=\phi(x)-\phi(y)-\langle\nabla \phi(y), x-y\rangle
$$

- ϕ is the kernel function
- ϕ is convex and continuously differentiable on int(dom ϕ)
other properties of ϕ may be required; e.g., strict convexity implies

$$
d_{\phi}(x, y)=0 \quad \Longrightarrow \quad x=y
$$

Bregman proximal point algorithm (BPPA)

BPPA minimizes a closed convex function ψ via the iterations

$$
x^{(k+1)}=\underset{x}{\operatorname{argmin}}\left(\psi(x)+\frac{1}{\alpha_{k}} d_{\phi}\left(x, x^{(k)}\right)\right)
$$

- assume the subproblem has a unique solution at every iteration

Bregman proximal point algorithm (BPPA)

BPPA minimizes a closed convex function ψ via the iterations

$$
x^{(k+1)}=\underset{x}{\operatorname{argmin}}\left(\psi(x)+\frac{1}{\alpha_{k}} d_{\phi}\left(x, x^{(k)}\right)\right)
$$

- assume the subproblem has a unique solution at every iteration

DCA from BPPA

- consider again the DC program

$$
\operatorname{minimize} \quad \psi(x)=g(x)+\delta_{\mathcal{C}}(x)-h(x)
$$

- BPPA follows the iterations (take $\phi=h$ and $\alpha_{k}=1$ for all $k \in \mathbb{N}$)

$$
\begin{aligned}
x^{(k+1)} & =\operatorname{argmin}\left(\psi(x)+d_{h}\left(x, x^{(k)}\right)\right) \\
& =\underset{x \in \mathcal{C}}{\operatorname{argmin}}\left(g(x)-h(x)+h(x)-h\left(x^{(k)}\right)-\left\langle\nabla h\left(x^{(k)}\right), x-x^{(k)}\right\rangle\right) \\
& =\underset{x \in \mathcal{C}}{\operatorname{argmin}}\left(g(x)-h\left(x^{(k)}\right)-\left\langle\nabla h\left(x^{(k)}\right), x-x^{(k)}\right\rangle\right)
\end{aligned}
$$

Censor and Zenios (1992), Auslender and Teboulle (2006), Tseng (2008)

Outline

Two interpretations of DCA

Convergence of DCA to global optimum

Bregman PDHG as subproblem solver

Applications and numerical results

Polyak-Łojasiewicz (PL) inequality

a function $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to satisfy PL inequality on a set \mathcal{D} if

$$
\exists \mu>0 \quad \text { s.t. } \psi(x)-\psi^{\star} \leq \frac{1}{2 \mu}\|\xi\|_{2}^{2}, \text { for all } x \in \mathcal{D} \text { and } \xi \in \operatorname{conv}(\widehat{\partial} \psi(x)),
$$

where $\widehat{\partial} \psi(x)$ is the regular subdifferential of ψ

- existence of $\widehat{\partial} \psi$ requires ψ to be locally Lipschitz continuous
- for differentiable ψ, PL inequality reduces to $\psi(x)-\psi^{\star} \leq \frac{1}{2 \mu}\|\nabla \psi(x)\|_{2}^{2}$

Polyak-Łojasiewicz (PL) inequality

a function $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to satisfy PL inequality on a set \mathcal{D} if

$$
\exists \mu>0 \quad \text { s.t. } \psi(x)-\psi^{\star} \leq \frac{1}{2 \mu}\|\xi\|_{2}^{2}, \text { for all } x \in \mathcal{D} \text { and } \xi \in \operatorname{conv}(\widehat{\partial} \psi(x)),
$$

where $\widehat{\partial} \psi(x)$ is the regular subdifferential of ψ

- existence of $\widehat{\partial} \psi$ requires ψ to be locally Lipschitz continuous
- for differentiable ψ, PL inequality reduces to $\psi(x)-\psi^{\star} \leq \frac{1}{2 \mu}\|\nabla \psi(x)\|_{2}^{2}$

Global linear convergence of DCA assume for the DC program

- $\mathcal{C}=\mathbb{R}^{d}, g$ and h are (globally) Lipschitz continuous with $L_{g}, L_{h}>0$
- f satisfies PL inequality on $\mathcal{D}=\left\{x \mid f(x) \leq f\left(x_{0}\right)\right\}$
then for all $k \in \mathbb{N}$,

$$
f\left(x^{(k+1)}\right)-f^{\star} \leq\left(\frac{1-\mu / L_{g}}{1+\mu / L_{h}}\right)\left(f\left(x^{(k)}\right)-f^{\star}\right)
$$

Generalized PL condition

Generalized PL condition for DC programs there exists $\mu, r \in \mathbb{R}_{++}$s.t.

$$
\mu\left(f(x)-f^{\star}\right) \leq d_{h^{*}}(\nabla g(x)+y, \nabla h(x)), \text { for all } x \in \mathcal{C}, y \in N_{\mathcal{C}}(x) \cap \mathcal{B}(r),
$$

where $N_{\mathcal{C}}(x)$ is the normal cone of \mathcal{C} at x, and $\mathcal{B}(r)=\left\{y \mid\|y\|_{2} \leq r\right\}$

- DC program is formulated as an unconstrained problem with objective

$$
\psi(x)=f(x)+\delta_{\mathcal{C}}(x)=g(x)+\delta_{\mathcal{C}}(x)-h(x)
$$

- Euclidean distance in PL inequality is generalized to a Bregman distance

$$
\|\xi\|_{2}^{2}=\|\nabla g(x)+y-\nabla h(x)\|_{2}^{2} \quad \Longrightarrow \quad d_{h^{*}}(\nabla g(x)+y, \nabla h(x))
$$

Faust et al. (2023): a simpler version of this condition (with $\mathcal{C}=\mathbb{R}^{d}$ and more assumptions on g, h)

Generalized PL condition

Generalized PL condition for DC programs there exists $\mu, r \in \mathbb{R}_{++}$s.t.

$$
\mu\left(f(x)-f^{\star}\right) \leq d_{h^{*}}(\nabla g(x)+y, \nabla h(x)), \text { for all } x \in \mathcal{C}, y \in N_{\mathcal{C}}(x) \cap \mathcal{B}(r),
$$

where $N_{\mathcal{C}}(x)$ is the normal cone of \mathcal{C} at x, and $\mathcal{B}(r)=\left\{y \mid\|y\|_{2} \leq r\right\}$

- DC program is formulated as an unconstrained problem with objective

$$
\psi(x)=f(x)+\delta_{\mathcal{C}}(x)=g(x)+\delta_{\mathcal{C}}(x)-h(x)
$$

- Euclidean distance in PL inequality is generalized to a Bregman distance

$$
\|\xi\|_{2}^{2}=\|\nabla g(x)+y-\nabla h(x)\|_{2}^{2} \quad \Longrightarrow \quad d_{h^{*}}(\nabla g(x)+y, \nabla h(x))
$$

Global linear convergence of DCA

$$
f\left(x^{(k+1)}\right)-f^{\star} \leq \frac{1}{1+\mu}\left(f\left(x^{(k)}\right)-f^{\star}\right)
$$

Faust et al. (2023): a simpler version of this condition (with $\mathcal{C}=\mathbb{R}^{d}$ and more assumptions on g, h) Yao and Jiang (2023)

Outline

Two interpretations of DCA

Convergence of DCA to global optimum

Bregman PDHG as subproblem solver

Applications and numerical results

DCA for running example

consider the running example

$$
\begin{array}{ll}
\operatorname{minimize} & -\log \operatorname{det}\left(X+\Sigma_{1}\right)+\lambda \log \operatorname{det}\left(X+\Sigma_{2}\right) \\
\text { subject to } & 0 \preceq X \preceq C
\end{array}
$$

with variable $X \in \mathbb{S}^{n}$; data $\Sigma_{1}, \Sigma_{2}, C \in \mathbb{S}_{++}^{n}$, and $\lambda>1$

- DCA takes the iterations

$$
X^{(k+1)}=\underset{0 \preceq X \preceq C}{\operatorname{argmin}}\left(-\log \operatorname{det}\left(X+\Sigma_{1}\right)+\left\langle\left(X^{(k)}+\Sigma_{2}\right)^{-1}, X\right\rangle\right)
$$

- at each DCA iteration, one solves the convex subproblem of the form

$$
\begin{array}{ll}
\operatorname{minimize} & -\log \operatorname{det}\left(X+\Sigma_{1}\right)+\langle A, X\rangle \\
\text { subject to } & 0 \preceq X \preceq C
\end{array}
$$

with variable $X \in \mathbb{S}^{n}$ and data $\Sigma_{1}, A \in \mathbb{S}_{++}^{n}$

Bregman primal-dual hybrid gradient method

consider the canonical convex problem

$$
\operatorname{minimize} \quad F(u)+G(\mathcal{A} u)
$$

where F, G are convex, (potentially) nonsmooth, and \mathcal{A} is a linear operator

Bregman PDHG

$$
\begin{aligned}
& u^{(k+1)}=\underset{u}{\operatorname{argmin}}\left(F(u)+\left\langle v^{(k)}, \mathcal{A} u\right\rangle+\frac{1}{\tau} d_{\phi_{\mathrm{p}}}\left(u, u^{(k)}\right)\right) \\
& \bar{u}^{(k+1)}=u^{(k+1)}+\theta\left(u^{(k+1)}-u^{(k)}\right) \\
& v^{(k+1)}=\underset{v}{\operatorname{argmin}}\left(G^{*}(v)-\left\langle v, \mathcal{A} \bar{u}^{(k+1)}\right\rangle+\frac{1}{\sigma} d_{\phi_{\mathrm{d}}}\left(v, v^{(k)}\right)\right.
\end{aligned}
$$

where $\phi_{\mathrm{p}}, \phi_{\mathrm{d}}$ are two kernel functions, σ, τ, and θ are stepsizes

Discussion on Bregman PDHG

Potential benefits of Bregman distances in PDHG

1. make the generalized proximal mapping easier to compute
2. "preconditioning": use a more accurate model of $F(u)$ around $u^{(k)}$
goal of 1 is to reduce cost per iteration
goal of 2 is to reduce number of iterations

Discussion on Bregman PDHG

Potential benefits of Bregman distances in PDHG

1. make the generalized proximal mapping easier to compute
2. "preconditioning": use a more accurate model of $F(u)$ around $u^{(k)}$
goal of 1 is to reduce cost per iteration
goal of 2 is to reduce number of iterations

Requirements

- the minimizer in u (and v) update exists and is unique
- $\phi_{\mathrm{p}}, \phi_{\mathrm{d}}$ are two strongly convex Bregman kernels

$$
d_{\mathrm{p}}\left(u, u^{\prime}\right) \geq \frac{1}{2}\left\|u-u^{\prime}\right\|_{\mathrm{p}}^{2}, \quad d_{\mathrm{d}}\left(v, v^{\prime}\right) \geq \frac{1}{2}\left\|v-v^{\prime}\right\|_{\mathrm{d}}^{2}
$$

- stepsizes must satisfy $\sigma \tau\|\mathcal{A}\|^{2} \leq 1$, where

$$
\|\mathcal{A}\|=\sup _{u \neq 0, v \neq 0} \frac{\langle v, \mathcal{A} u\rangle}{\|v\|_{\mathrm{d}}\|u\|_{\mathrm{p}}}
$$

- line search techniques are developed to adaptively choose the stepsizes

Bregman PDHG as subproblem solver

apply Bregman PDHG to the subproblem

$$
\text { minimize } \quad-\log \operatorname{det}\left(X+\Sigma_{1}\right)+\langle A, X\rangle+\delta_{\mathbb{S}_{+}^{n}}(X)+\delta_{\{X \mid X \preceq C\}}(X)
$$

- take $\phi_{\mathrm{d}}=\frac{1}{2}\|\cdot\|_{F}^{2}$, dual update involves PSD projection
- take $\phi_{\mathrm{p}}(X)=-\log \operatorname{det}\left(X+\Sigma_{1}\right)$, primal update involves the problem

$$
\begin{array}{ll}
\operatorname{minimize} & -\left(1+\frac{1}{\tau}\right) \log \operatorname{det}\left(X+\Sigma_{1}\right)+\langle B, X\rangle \\
\text { subject to } & X \succeq 0
\end{array}
$$

with variable $X \in \mathbb{S}^{n}$ and data $\Sigma_{1}, B \in \mathbb{S}_{++}^{n}$

- this problem has a closed-form solution

$$
X^{\star}=\Sigma_{1}^{1 / 2} Q \zeta(\Lambda) Q^{T} \Sigma_{1}^{1 / 2}, \quad \text { where } \zeta(\gamma)=\max \{(1-\gamma) / \gamma, 0\}
$$

and $\Sigma_{1}^{1 / 2} B \Sigma_{1}^{1 / 2}=Q \Lambda Q^{T}$ is the eigen-decomposition

A general algorithmic framework for DC programming

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)=g(x)-h(x) \\
\text { subject to } & x \in \mathcal{C}=\mathcal{C}_{1} \cap \mathcal{C}_{2}
\end{array}
$$

- g, h are differentiable, and strongly convex on \mathcal{C}
- $\mathcal{C}_{1}, \mathcal{C}_{2}$ are bounded, convex; projection on $\mathcal{C}_{1}, \mathcal{C}_{2}$ is much easier than on \mathcal{C}
- recall the DCA iteration

$$
x^{(k+1)}=\underset{x \in \mathcal{C}_{1} \cap \mathcal{C}_{2}}{\operatorname{argmin}}\left(g(x)-\left\langle\nabla h\left(x^{(k)}\right), x\right\rangle\right)
$$

Bregman PDHG as subproblem solver

- reformulate the DCA subproblem as minimizing $F+G \circ \mathcal{A}$ with

$$
F=g-\left\langle\nabla h\left(x^{(k)}\right), \cdot\right\rangle+\delta_{\mathcal{C}_{1}}, \quad G=\delta_{\mathcal{C}_{2}}, \quad \mathcal{A}=\mathrm{Id}
$$

- with $\phi_{\mathrm{p}}=g$, primal PDHG update reduces to a Bregman projection

$$
u^{(t+1)}=\underset{u \in \mathcal{C}_{1}}{\operatorname{argmin}} d_{g}(u, \tilde{u})
$$

where \tilde{u} depends on data and previous iterates (t is PDHG iteration counter while k is DCA counter)

Outline

Two interpretations of DCA

Convergence of DCA to global optimum

Bregman PDHG as subproblem solver

Applications and numerical results

Numerical results for running example

n	algo	num. of DCA iter.	num. of inner iter.	runtime (in sec.)	runtime per DCA iter.
	DCA-PDHG (Breg.)	9.5	1735	3.63×10^{2}	38.23
	DCA-PDHG (Euc.)	9.5	2046	3.81×10^{2}	40.09
	DCA-MOSEK	8.9	76	1.02×10^{3}	108.1
1000	DCA-PDHG (Breg.)	13.6	1324	1.73×10^{3}	127.2
	DCA-PDHG (Euc.)	13.6	1684	2.20×10^{3}	162.4
	DCA-MOSEK	13.2	96	9.87×10^{3}	726.3

- results are averaged over 10 synthetic datasets
- DCA-PDHG (Euc.) uses Euclidean PDHG as subproblem solver each PDHG iteration involves two eigens and solving n quadratic systems
- DCA-MOSEK uses the interior-point-method-based solver MOSEK

Example: Gaussian broadcast channel

$$
\begin{array}{ll}
\text { minimize } & -\beta \log \operatorname{det}\left(X+Y+\Sigma_{2}\right)+\alpha \log \operatorname{det}\left(X+Y+\Sigma_{1}\right) \\
& -\log \operatorname{det}\left(X+\Sigma_{1}\right)+\lambda \log \operatorname{det}\left(X+\Sigma_{2}\right) \\
\text { subject to } & X+Y \preceq C, \quad X \succeq 0, \quad Y \succeq 0
\end{array}
$$

with variables $X, Y \in \mathbb{S}^{n}$; data $\Sigma_{1}, \Sigma_{2}, C \in \mathbb{S}_{++}^{n}, \alpha \in[0,1], \beta>0, \lambda>1$

- the objective satisfies the generalized PL condition
- PDHG iteration has a closed-form expression, and is dominated by eigen

n	algo	num. of DCA iter.	num. of inner iter.	runtime (in sec.)	runtime per DCA iter.
	DCA-PDHG (Breg.)	10.2	1273	5.63×10^{2}	56.07
	DCA-PDHG (Euc.)	10.2	1496	5.71×10^{2}	75.83
	DCA-MOSEK	9.8	93	2.32×10^{3}	225.1
1000	DCA-PDHG (Breg.)	12.4	1468	3.50×10^{3}	281.9
	DCA-PDHG (Euc.)	12.4	1632	4.08×10^{3}	313.3
	DCA-MOSEK	-	-	-	-

Example: generalized Brascamp-Lieb inequality

this problem generalizes the computation of Brascamp-Lieb constant

$$
\begin{array}{ll}
\operatorname{minimize} & -\sum_{i=1}^{p} \beta_{i} \log \operatorname{det} X_{i}+\sum_{j=1}^{q} \alpha_{j} \log \operatorname{det}\left(\sum_{i=1}^{p} A_{i j} X_{i} A_{i j}^{T}+\rho I_{m_{j}}\right) \\
\text { subject to } & 0 \preceq X_{i} \preceq C_{i}, \quad i=1, \ldots, p
\end{array}
$$

with variable $X_{i} \in \mathbb{S}^{n_{i}}$; and data $A_{i j} \in \mathbb{R}^{m_{j} \times n_{i}}, C_{i} \in \mathbb{S}_{+}^{n_{i}}, \alpha \in \mathbb{R}_{+}^{q}, \beta \in \mathbb{R}_{+}^{p}$

- its optimum computes the optimal constant for a family of inequalities
- it covers the well-known Brascamp-Lieb inequality (with $\mathbf{1}^{T} \alpha=1$)

$$
f_{\mathrm{BL}}(X)=-\log \operatorname{det} X+\sum_{j=1}^{q} \alpha_{j} \log \operatorname{det}\left(A_{j} X A_{j}^{T}\right)
$$

- this problem satisfies the generalized PL condition

Bregman PDHG as subproblem solver

- in DCA subproblem, the variables $\left\{X_{i}\right\}$ are separable
- PDHG update has a closed-form expression, and is dominated by eigen

Numerical results

n	algo	num. of DCA iter.	num. of inner iter.	runtime (in sec.)	runtime per DCA iter.
	DCA-PDHG (Breg.)	14.7	1157.9	9.98×10^{2}	64.21
	DCA-PDHG (Euc.)	14.7	1297.5	1.14×10^{3}	70.42
	DCA-MOSEK	13.9	85.2	5.36×10^{4}	364.8
1000	DCA-PDHG (Breg.)	14.2	1048.7	5.74×10^{3}	412.6
	DCA-PDHG (Euc.)	14.2	1362.6	6.52×10^{3}	468.7
	DCA-MOSEK	-	-	-	-

- results are averaged over 10 synthetic datasets ($p=q=3, n_{i}=n$)
- Bregman PDHG takes fewer iterations and has cheaper per-iteration cost
- IPM-based solver has much more expensive per-iteration complexity

Summary

New convergence results for DCA

- generalized PL condition for DC programs with set constraints
- convergence to global optimum with linear rate

Bregman PDHG as subproblem solver

- split the constraint set into \mathcal{C}_{1} and \mathcal{C}_{2}
- primal distance generated by g
- primal PDHG update is Bregman projection on a simple convex set

Applications in network information theory

- generalized PL condition is satisfied
- each PDHG iteration has closed-form expression
- per-iteration cost is comparable to eigen-decomposition

