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Difference-of-convex (DC) programming

consider the class of difference-of-convex (DC) optimization problems

minimize f(x) = g(x) − h(x)
subject to x ∈ C

• g, h are closed, convex, and continuously differentiable
• different assumptions can be posed on C
• assume optimum is attained at x⋆, with finite optimal value f⋆

Applications: some problems have an equivalent DC reformulation
• problems with a concave objective
• some bilevel optimization problems
• some nonconvex regularizers have DC reformulation or relaxation

Lipp & Boyd (2016), de Oliveira (2020) 2



Difference-of-convex algorithm (DCA)

the difference-of-convex algorithm (DCA) is a conceptually simple method

x(k+1) ∈ argmin
x∈C

(
g(x) − (h(x(k)) + ⟨∇h(x(k)), x− x(k)⟩)

)
it has been studied under various names
• a special case of the majorization–minimization (MM) algorithm
• nonsmooth extension exists (∇h(x(k)) is replaced with a subgradient of h)
• also known as the convex–concave procedure (CCCP)

most research focuses on C is the entire space or defined by DC functions

Properties and convergence results
• monotonicity of function values: f(x(k+1)) ≤ f(x(k)) for all k ∈ N
• DCA converges to a first-order stationary point with an O(1/k) rate

Tao and Souad (1986)
Yuille and Rangarajan (2003), Sriperumbudur and Lanckriet (2009), Smola et al. (2015) 3



Motivation and contributions

Running example from network information theory

minimize − log det(X + Σ1) + λ log det(X + Σ2)
subject to 0 ⪯ X ⪯ C

with variable X ∈ Sn; data Σ1,Σ2 ∈ Sn
++, C ∈ Sn

+, λ > 1
• the problem is nonconvex as λ > 1
• the problem has a unique global optimum (Lau, Nair, and Yao (2022))

Contributions
• Global linear convergence of DCA under generalized PL conditions
• Subproblem solver: primal–dual proximal methods with Bregman distances
• Application to several problems in various fields

4
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Two interpretations of DCA
DCA from Frank–Wolfe algorithm
DCA from Bregman proximal point algorithm

Convergence of DCA to global optimum

Bregman PDHG as subproblem solver

Applications and numerical results



Frank–Wolfe algorithm

consider the canonical optimization problem

minimize ψ(z)
subject to z ∈ D,

where D is closed and convex, and ψ is continuously differentiable

Frank–Wolfe algorithm takes the following iterations

ẑ ∈ argmin
z∈D

(
⟨∇ψ(z(k)), z − z(k)⟩

)
z(k+1) = (1 − θk)z(k) + θkẑ,

where θk ∈ [0, 1] can be chosen via various techniques
• if ψ is convex or concave, FW converges with an O(1/k) rate
• if ψ is nonconvex, FW converges to a stationary point with rate O(1/

√
k)

5



DCA from FW algorithm

• the DC program can be rewritten as

minimize t− h(x)
subject to g(x) + δC(x) ≤ t

with variables x ∈ Rd and t ∈ R

• the ẑ-update in FW method linearizes the objective

ẑ ∈ argmin
z=(x,t)∈D

⟨∇ψ(z(k)), z − z(k)⟩

= argmin
(x,t)∈D

(
t− ⟨∇h(x(k)), x− x(k)⟩

)
= argmin

x∈C

(
g(x) − ⟨∇h(x(k)), x− x(k)⟩

)
,

where ψ(x, t) = t− h(x) is concave
• it can be shown that θk = 1 is valid in this case
• previous O(1/k) convergence result applies

Yurtsever and Sra (2022) 6
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Bregman distance (generalized distance)

dϕ(x, y) = ϕ(x) − ϕ(y) − ⟨∇ϕ(y), x− y⟩

(y, ϕ(y))

(x, ϕ(x))

d(x, y)

• ϕ is the kernel function
• ϕ is convex and continuously differentiable on int(domϕ)

other properties of ϕ may be required; e.g., strict convexity implies

dϕ(x, y) = 0 =⇒ x = y

Bregman (1967), Censor and Zenios (1997) 7



Bregman proximal point algorithm (BPPA)

BPPA minimizes a closed convex function ψ via the iterations

x(k+1) = argmin
x

(
ψ(x) + 1

αk
dϕ(x, x(k))

)
• assume the subproblem has a unique solution at every iteration

DCA from BPPA
• consider again the DC program

minimize ψ(x) = g(x) + δC(x) − h(x)

• BPPA follows the iterations (take ϕ = h and αk = 1 for all k ∈ N)

x(k+1) = argmin
(
ψ(x) + dh(x, x(k))

)
= argmin

x∈C

(
g(x) − h(x) + h(x) − h(x(k)) − ⟨∇h(x(k)), x− x(k)⟩

)
= argmin

x∈C

(
g(x) − h(x(k)) − ⟨∇h(x(k)), x− x(k)⟩

)

Censor and Zenios (1992), Auslender and Teboulle (2006), Tseng (2008)
Faust et al. (2023) 8
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Polyak–Łojasiewicz (PL) inequality

a function ψ : Rn → R is said to satisfy PL inequality on a set D if

∃µ > 0 s.t. ψ(x) − ψ⋆ ≤ 1
2µ ∥ξ∥2

2, for all x ∈ D and ξ ∈ conv(∂̂ψ(x)),

where ∂̂ψ(x) is the regular subdifferential of ψ
• existence of ∂̂ψ requires ψ to be locally Lipschitz continuous
• for differentiable ψ, PL inequality reduces to ψ(x) − ψ⋆ ≤ 1

2µ ∥∇ψ(x)∥2
2

Global linear convergence of DCA assume for the DC program
• C = Rd, g and h are (globally) Lipschitz continuous with Lg, Lh > 0
• f satisfies PL inequality on D = {x | f(x) ≤ f(x0)}

then for all k ∈ N,

f(x(k+1)) − f⋆ ≤
(

1 − µ/Lg

1 + µ/Lh

) (
f(x(k)) − f⋆

)

Polyak (1963), Łojasiewicz (1963), Abbaszadehpeivasti, de Klerk, and Zamani (2023) 9
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Generalized PL condition

Generalized PL condition for DC programs there exists µ, r ∈ R++ s.t.

µ(f(x) − f⋆) ≤ dh∗(∇g(x) + y,∇h(x)), for all x ∈ C, y ∈ NC(x) ∩ B(r),

where NC(x) is the normal cone of C at x, and B(r) = {y | ∥y∥2 ≤ r}
• DC program is formulated as an unconstrained problem with objective

ψ(x) = f(x) + δC(x) = g(x) + δC(x) − h(x)

• Euclidean distance in PL inequality is generalized to a Bregman distance

∥ξ∥2
2 = ∥∇g(x) + y − ∇h(x)∥2

2 =⇒ dh∗(∇g(x) + y,∇h(x))

Global linear convergence of DCA

f(x(k+1)) − f⋆ ≤ 1
1 + µ

(f(x(k)) − f⋆)

Faust et al. (2023): a simpler version of this condition (with C = Rd and more assumptions on g, h)
Yao and Jiang (2023) 10
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DCA for running example

consider the running example

minimize − log det(X + Σ1) + λ log det(X + Σ2)
subject to 0 ⪯ X ⪯ C

with variable X ∈ Sn; data Σ1,Σ2, C ∈ Sn
++, and λ > 1

• DCA takes the iterations

X(k+1) = argmin
0⪯X⪯C

(
− log det(X + Σ1) + ⟨(X(k) + Σ2)−1, X⟩

)
• at each DCA iteration, one solves the convex subproblem of the form

minimize − log det(X + Σ1) + ⟨A,X⟩
subject to 0 ⪯ X ⪯ C

with variable X ∈ Sn and data Σ1, A ∈ Sn
++

11



Bregman primal–dual hybrid gradient method

consider the canonical convex problem

minimize F (u) +G(Au),

where F , G are convex, (potentially) nonsmooth, and A is a linear operator

Bregman PDHG

u(k+1) = argmin
u

(
F (u) + ⟨v(k),Au⟩ + 1

τ dϕp(u, u(k))
)

u(k+1) = u(k+1) + θ(u(k+1) − u(k))
v(k+1) = argmin

v

(
G∗(v) − ⟨v,Au(k+1)⟩ + 1

σdϕd(v, v(k))

where ϕp, ϕd are two kernel functions, σ, τ , and θ are stepsizes

Chambolle and Pock (2016) 12



Discussion on Bregman PDHG

Potential benefits of Bregman distances in PDHG
1. make the generalized proximal mapping easier to compute
2. “preconditioning”: use a more accurate model of F (u) around u(k)

goal of 1 is to reduce cost per iteration
goal of 2 is to reduce number of iterations

Requirements
• the minimizer in u (and v) update exists and is unique
• ϕp, ϕd are two strongly convex Bregman kernels

dp(u, u′) ≥ 1
2 ∥u− u′∥2

p, dd(v, v′) ≥ 1
2 ∥v − v′∥2

d

• stepsizes must satisfy στ∥A∥2 ≤ 1, where

∥A∥ = sup
u ̸=0,v ̸=0

⟨v,Au⟩
∥v∥d∥u∥p

• line search techniques are developed to adaptively choose the stepsizes

Malitsky & Pock (2018), Yazdandoost Hamedani & Aybat (2021), Jiang & Vandenberghe (2022) 13
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Bregman PDHG as subproblem solver

apply Bregman PDHG to the subproblem

minimize − log det(X + Σ1) + ⟨A,X⟩ + δSn
+

(X) + δ{X|X⪯C}(X)

• take ϕd = 1
2 ∥ · ∥2

F , dual update involves PSD projection
• take ϕp(X) = − log det(X + Σ1), primal update involves the problem

minimize −(1 + 1
τ ) log det(X + Σ1) + ⟨B,X⟩

subject to X ⪰ 0

with variable X ∈ Sn and data Σ1, B ∈ Sn
++

• this problem has a closed-form solution

X⋆ = Σ1/2
1 Qζ(Λ)QT Σ1/2

1 , where ζ(γ) = max{(1 − γ)/γ, 0}

and Σ1/2
1 BΣ1/2

1 = QΛQT is the eigen-decomposition

Yao and Jiang (2023) 14



A general algorithmic framework for DC programming

minimize f(x) = g(x) − h(x)
subject to x ∈ C = C1 ∩ C2

• g, h are differentiable, and strongly convex on C
• C1, C2 are bounded, convex; projection on C1, C2 is much easier than on C
• recall the DCA iteration

x(k+1) = argmin
x∈C1∩C2

(
g(x) − ⟨∇h(x(k)), x⟩

)
Bregman PDHG as subproblem solver
• reformulate the DCA subproblem as minimizing F +G ◦ A with

F = g − ⟨∇h(x(k)), ·⟩ + δC1 , G = δC2 , A = Id
• with ϕp = g, primal PDHG update reduces to a Bregman projection

u(t+1) = argmin
u∈C1

dg(u, ũ),

where ũ depends on data and previous iterates
(t is PDHG iteration counter while k is DCA counter)

Yao and Jiang (2023) 15
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Numerical results for running example

n algo num. of
DCA iter.

num. of
inner iter.

runtime
(in sec.)

runtime
per DCA iter.

500
DCA-PDHG (Breg.) 9.5 1735 3.63 × 102 38.23
DCA-PDHG (Euc.) 9.5 2046 3.81 × 102 40.09
DCA-MOSEK 8.9 76 1.02 × 103 108.1

1000
DCA-PDHG (Breg.) 13.6 1324 1.73 × 103 127.2
DCA-PDHG (Euc.) 13.6 1684 2.20 × 103 162.4
DCA-MOSEK 13.2 96 9.87 × 103 726.3

• results are averaged over 10 synthetic datasets
• DCA-PDHG (Euc.) uses Euclidean PDHG as subproblem solver

each PDHG iteration involves two eigens and solving n quadratic systems
• DCA-MOSEK uses the interior-point-method-based solver MOSEK

16



Example: Gaussian broadcast channel

minimize −β log det(X + Y + Σ2) + α log det(X + Y + Σ1)
− log det(X + Σ1) + λ log det(X + Σ2)

subject to X + Y ⪯ C, X ⪰ 0, Y ⪰ 0

with variables X,Y ∈ Sn; data Σ1,Σ2, C ∈ Sn
++, α ∈ [0, 1], β > 0, λ > 1

• the objective satisfies the generalized PL condition
• PDHG iteration has a closed-form expression, and is dominated by eigen

n algo num. of
DCA iter.

num. of
inner iter.

runtime
(in sec.)

runtime
per DCA iter.

500
DCA-PDHG (Breg.) 10.2 1273 5.63 × 102 56.07
DCA-PDHG (Euc.) 10.2 1496 5.71 × 102 75.83
DCA-MOSEK 9.8 93 2.32 × 103 225.1

1000
DCA-PDHG (Breg.) 12.4 1468 3.50 × 103 281.9
DCA-PDHG (Euc.) 12.4 1632 4.08 × 103 313.3
DCA-MOSEK - - - -

17



Example: generalized Brascamp–Lieb inequality

this problem generalizes the computation of Brascamp–Lieb constant

minimize −
p∑

i=1
βi log detXi +

q∑
j=1

αj log det
( p∑

i=1
AijXiA

T
ij + ρImj

)
subject to 0 ⪯ Xi ⪯ Ci, i = 1, . . . , p

with variable Xi ∈ Sni ; and data Aij ∈ Rmj×ni , Ci ∈ Sni
+ , α ∈ Rq

+, β ∈ Rp
+

• its optimum computes the optimal constant for a family of inequalities
• it covers the well-known Brascamp–Lieb inequality (with 1Tα = 1)

fBL(X) = − log detX +
q∑

j=1
αj log det(AjXA

T
j )

• this problem satisfies the generalized PL condition

Bregman PDHG as subproblem solver
• in DCA subproblem, the variables {Xi} are separable
• PDHG update has a closed-form expression, and is dominated by eigen

18



Numerical results

n algo num. of
DCA iter.

num. of
inner iter.

runtime
(in sec.)

runtime
per DCA iter.

500
DCA-PDHG (Breg.) 14.7 1157.9 9.98 × 102 64.21
DCA-PDHG (Euc.) 14.7 1297.5 1.14 × 103 70.42
DCA-MOSEK 13.9 85.2 5.36 × 104 364.8

1000
DCA-PDHG (Breg.) 14.2 1048.7 5.74 × 103 412.6
DCA-PDHG (Euc.) 14.2 1362.6 6.52 × 103 468.7
DCA-MOSEK - - - -

• results are averaged over 10 synthetic datasets (p = q = 3, ni = n)
• Bregman PDHG takes fewer iterations and has cheaper per-iteration cost
• IPM-based solver has much more expensive per-iteration complexity

19



Summary

New convergence results for DCA
• generalized PL condition for DC programs with set constraints
• convergence to global optimum with linear rate

Bregman PDHG as subproblem solver
• split the constraint set into C1 and C2

• primal distance generated by g
• primal PDHG update is Bregman projection on a simple convex set

Applications in network information theory
• generalized PL condition is satisfied
• each PDHG iteration has closed-form expression
• per-iteration cost is comparable to eigen-decomposition

20
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