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Convergence of random variables

• consider stochastic process {Vk} and random variable V in (Ω,F ,P)

• convergence in probability: {Vk}
p→ V if and only if

lim
k→∞

P[∥Vk − V ∥ > ϵ] = 0 for all ϵ > 0

• almost-sure convergence: {Vk}
a.s.−→ V if and only if

P
[

lim
k→∞

Vk = V
]

= 1

• almost-sure convergence implies convergence in probability

{Vk}
a.s.−→ V =⇒ {Vk}

p−→ V
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Stochastic optimization (unconstrained)

minimize f(x) △= Eω[F (x, ω)]
• f : Rn → R is smooth and potentially nonconvex
• random variable ω has probability space (Ω,F ,P)

Stochastic approximation/gradient method
• using unbiased derivative estimates to solve a (nonlinear) equation

lim
k→∞

E[(Xk − x⋆)2] = 0 =⇒ {Xk}
p→ x⋆

• cast into the context of stochastic (unconstrained) minimization:

lim
k→∞

E[∥∇f(Xk)∥2] = 0

Almost-sure convergence
• for stochastic approximation (solving an equation): {Xk}

a.s.−→ x⋆

• for stochastic gradient (minimization): {∇f(Xk)} a.s.−→ 0
Robbins and Monro (1951), Robbins and Siegmund (1971), Bertsekas and Tsitsiklis (2000) 3



Constrained stochastic optimization

minimize f(x)
subject to c(x) = 0

• f(x) = E[F (x, ω)], and c is continuously differentiable
• ∇f and ∇c are Lipschitz continuous
• stationarity condition: ∇f(x) +∇c(x)y = 0, and c(x) = 0

Stochastic sequential quadratic optimization (SQP):
• solve a QP based on a local quadratic model of f and affine model of c

• equivalent to solve a linear system with gradient estimate gk ≈ ∇f(xk):[
Hk JT

k

Jk 0

] [
dk

yk

]
= −

[
gk

ck

]
• update primal iterate with prescribed stepsizes {αk}:

xk+1 ← xk + αkdk
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Application: physics-informed machine learning

Karniadakis et al. (2021) 5



Convergence to stationarity

with suitable choice of stepsizes {αk},

lim inf
k→∞

E
[
∥∇f(Xk) +∇c(Xk)T Y true

k ∥+ ∥c(Xk)∥
]

= 0

over some subsequence the expected stationarity measure vanishes, but
• it does not guarantee that {Xk} converges in any sense
• the values {Y true

k } are not realized by the algorithm
• no information of the computed {Yk} is provided

Lagrange multipliers are important for
• stationarity verification
• active-set identification
• etc.

Berahas et al. (2021) 6



Preview

we are going to see conditions that guarantee behavior as seen below
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apply stochastic SQP to solve a constrained logistic regression problem
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Main result I: short version

Almost-sure convergence of the primal iterates

{Xk}
a.s.−→ x⋆

Assumptions
• a stationarity measure grows sufficiently away from x⋆

• {Xk} remains within a small neighborhood of x⋆

respectively, these are assumptions about
• the problem, similar to “local convexity” or ”generalized PL condition”
• algo. behavior: undesirable yet necessary in nonconvex, stochastic setting
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Almost-sure convergence of the primal iterates
Convergence measure: exact penalty/merit function

ϕ(x) = τf(x) + ∥c(x)∥

Assumptions
• ϕ(x) ≥ ϕ(x⋆) for all x ∈ B(x⋆, ϵ), with equality only if x = x⋆

• a generalized Polyak–Łojasiewicz condition holds for all x ∈ B(x⋆, ϵ)\{x⋆}:

ϕ(x) ≤ ϕ(x⋆) + µ
(
τ∥Z(x)T∇f(x)∥2 + ∥c(x)∥

)
where Z(x) ∈ Rn×(n−m) forms an orthogonal basis for Null(∇c(x)T )

• {Xk} ⊂ B(x⋆, ϵ) almost surely: lim supk→∞{∥Xk − x⋆∥} ≤ ϵ

Main result I: almost-sure convergence of the primal iterates

{ϕ(Xk)} a.s.−→ ϕ(x⋆), {Xk}
a.s.−→ x⋆,

{[
∇f(Xk) +∇c(Xk)Y true

k

c(Xk)

]}
a.s.−→ 0
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Multipliers as a (noisy) mapping of the primal iterates

standard analysis of SQP shows that

Yk = Mk(Hk(∇c(Xk)†)T c(Xk)−Gk) ∈ Rm,

where Mk is a product of a pseudoinverse and a projection matrix:

Mk = ∇c(Xk)†(I −HkZk(ZT
k HkZk)−1ZT

k ) ∈ Rm×n,

and Zk is a basis for Null(∇c(Xk)T )

if {Xk}
a.s.−→ x⋆, then one would expect

• {Y true
k } a.s.−→ y⋆ (as above with ∇f(Xk) in place of Gk)

• {Yk} noisy with error proportional to error in stochastic gradient estimators
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Initial result

Assumptions: (x⋆, y⋆) is a stationary point, and in B(x⋆, ϵ),
• Hk = H(Xk) is defined by a (locally) Lipschitz continuous function H
• Mk =M(Xk) is defined by a (locally) Lipschitz continuous function M

One-iteration analysis: if Xk ∈ B(x⋆, ϵ), then

∥Yk − y⋆∥ ≤ κy∥Xk − x⋆∥+ r−1∥∇f(X)−Gk∥
∥Y true

k − y⋆∥ ≤ κy∥Xk − x⋆∥,

where (κy, r) ∈ R++ × R++ are constants

unfortunately, this means
• {Yk} always has error
• {Y true

k } converges if {Xk} does, but are not realized (require ∇f(Xk))
11



The averaged Lagrange multipliers

Idea: does averaging help reduce stochastic gradient errors?
• if Xk = x⋆ for all k ∈ N, one can leverage classical central limit theorem
• yet, in practice, multipliers are not IID estimators of y⋆

Martingale central limit theorem: 1
kE

[
∥

∑k
i=1 ui∥

] a.s.−→ 0 if

1
kE

[
∥ui∥2]

<∞,
{

1
k

k∑
i=1

E
[
∥ui∥21{

∥ui∥√
k

>δ
}]} p→ 0,

{
1
k

k∑
i=1

E[uiu
T
i |Fi]

}
p→ Σ, sup

k∈N
E

[∥∥∥ k∑
i=1

1√
k

ui

∥∥∥2]
<∞,

where uk := Mk(∇f(Xk)−Gk)

Main result II: almost-sure convergence of multipliers

{Xk}
a.s.−→ x⋆ =⇒ {Y true

k } a.s.−→ y⋆, and {Y avg
k } a.s.−→ y⋆
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Test problem

consider constrained logistic regression of the form

minimize 1
N

∑N
i=1 log

(
1 + e−γidT

i x
)

subject to Ax = b, ∥x∥2
2 = 1,

where x ∈ Rn is the optimization variable, and
• D =

[
d1 · · · dN

]
∈ Rn×N is a feature matrix

• γ ∈ RN is a label vector
• A ∈ Rm×n, b ∈ Rm,

we plot prior sequences as well as Lagrange multiplier averages

Y avg
k (ϵ) := average of Yj ’s corresponding to Xj ’s with ∥Xj −Xk∥ ≤ ϵ
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Numerical results
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Summary

minimize f(x)
subject to c(x) = 0,

where f and c are continuously differentiable, and potentially nonconvex

for a stochastic SQP method, we present conditions that guarantee
• almost-sure convergence of {Xk} to x⋆

• {∥Yk − y⋆∥} bounded by {∥Gk −∇f(Xk)∥}
• almost-sure convergence of {Y true

k } to y⋆

• almost-sure convergence of {Y avg
k } to y⋆
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