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Distributed optimization

minimize f(z) := %Zfz(x)
i=1

o distributed methods perform computation over a network (broader class)

e decentralized methods do so without central coordination (a subclass)

| agent 1 | | agent 2 | | agent 3 |

centralized setting decentralized setting




Network topology in decentralized optimization

Classic assumptions on network topology
e static and defined beforehand, e.g., network sensor localization

e dynamic/time-varying: bounded eigenvalues
Amin] < WH) < Amaxd, for all iterations k

e agents are equidistant

Modern scenarios (e.g., high-performance computing (HPC), GPU)
e networks are flexible and cheaply rearranged
e networks are time-varying and might be disconnected

e agents are formed in clusters: intra-cluster communication is cheaper

This talk:

design new time-varying topologies with desirable properties



Decentralized average consensus

Mixing matrix W € R™*"™ in decentralized optimization algorithms
e associated with a graph G = (V, E): W;; =01if {i,j} ¢ E
e a round of communication is represented as matrix—vector product

Wy)i = > Wiy = > Wiy
j=1 JEN;

Decentralized average consensus

e suppose each agent i € V contains a vector z; € R?
goal: to compute the average = = %2?21 x; in a decentralized manner
decentralized averaging with mixing matrix W € R™"*"

XEED —ywwx®) | where X = [ml Ty - xn]T e R™x4
it converges asymptotically for all X(© if and only if

Wi=1, Wil=1, 1=|[M>\]> >\



Graph sequence with finite-time consensus property

the finite-time consensus property is defined for a given sequence of graphs

{6V =wv,w® B

Consensus perspective: decentralized averaging converges in 7 iterations

X — D=2 O x©) — 177

Matrix perspective: {W(l I R™*" are doubly stochastic and

WD -2 Oy — gt . g
n



Preview

we study three classes of graph sequences with finite-time consensus

graph sequence size n T

one-peer exponential n =27 logy 1
p-peer hyper-cuboids any n € N>,  # prime factors
SDS factor graphs any n € N>y flexible™

SDS: sequential doubly stochastic; *: 7 is related to a partition n. =% | | ng

in the first two classes, we use the following convention to index W € R™*"

W:[’U}i]‘], i,j:U,l,...,ﬂ,—l



Outline

One-peer exponential graphs



One-peer exponential graphs

o for n € N>o, define 7 := |log, n] and {G}]_" with weight matrices

3 ifmod(j —i,n) = 2med7)
wl =L ifi=;
ij 3 =]
0 otherwise

/@»f@\@ 9@0 O,
oaf To oo

@8@\@,@/ OFO T L0

e if n =27 for some 7 € Nx1, then {WW}]_" has finite-time consensus

[ALBR'19, YYC+'21, NJYU'23]



One-peer exponential graphs
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Detour: circulant matrix

e the n X n circulant matrix associated with ¢ = (co, Cly.--,y cn,l) is
Co Cn—1 ¢ C2 C1
C1 Co Cn—1 C2
et _ c c
C = Circ(cg, 1y« yCpe1) = 1 0
Cn—2 - - Cp—1
Cn—1 Cp—2 - C1 €o

e all circulant matrices share the same eigenvectors:
_ (A4 : 1 pH
C= (ﬁF) - (diag(Fc)) - (WF )
where F' is the n x n DFT matrix
e the eigenvalues are complex numbers:

N =co+aw +ew? - Fepow™ YV i=0,1,...,n—1,

where w = exp (%) is a primitive n-th root of unity



Proof for finite-time consensus

e the mixing matrices of one-peer exponential graphs are circulant, and

WD w WO = (o F) - (AT AN - (Do),

where A = diag(Fc) and ¢ is the first column of W©®
e the first entry in Fc(!) is always 1 because Fy . = 17
e it implies the first entry in A := A~ ... AMAO) js 1

e the other (diagonal) entries in A, A;;, are

2% ((1 + W= DOY(1 4 wr=DOY (1 4 D). (1 4 w(n—z**)u)))
- QLT ((1 + WY1 4 IO (1 4 DD (1 + w(—z**xz‘)))

n—1
1 L1 (1w
= — M= —_— == O
27%“ 27(1wz)
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Outline

p-Peer hyper-cuboids



One-peer hyper-cube

e given n = 2" with some 7 € N>, define

if (i A j) = 2med(t)

wi) = if i = j

ij

O = =

otherwise,

where i A j represents the bit-wise XOR operation between i and j

e represent 4 in its binary form (i,_1i;_2...49)2, and the first if-condition is

T A i i Y = (0010 - 0)o:
(ir—1i7—2---i0)2 A (Jr—1jr—2---Jo)2 = (0---01 0 - 0),)27
mod(l,7

only the (mod(l, 7) + 1)-th digit in i's and j's binary form is different

[SLJJ'16] 11



One-peer hyper-cube
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Multi-base representation of integers
e extension of one-peer hyper-cube to arbitrary matrix size n relies on:
multi-base integer representation
e (pr—1,Pr—2,.-.,P0)-based representation is an element in
Npﬂ'fl X prfz X X NPO’

where N, is the group of nonnegative integers modulo p; € N>»

for example, (2,2, ...,2)-based representation is binary representation

(2, 3)-based representation maps any integer in {0,1,...,5} to

0 — {0}2 x {0}3 1 —{0}2 x {1}3 2 = {0}2 x {2}3
3 — {1}2 X {0}3 4 — {1}2 X {1}3 5 — {1}2 X {2}3

overload the notation as (Zp, | **“ ipyipg)pr_1,....p1.p0

13



p-Peer hyper-cuboid

e suppose the prime factorization of n € N>y is n = p,_; - - p1po; then

1 g -
Prmod(1,m) if (Z /\p‘r—17"'-,p17p0 ]) - (07 e aO, 17 07 T 70)1)1——17---7131,1)0
’LU(l) _ ) mod(l,7)
ij =i
Pmod(l,r) If v J
0 otherwise,

where i A, 1 po J denotes the bit-wise XOR operation
between the (p,_1,...,p1,po)-based representation of ¢ and j

e e.g., the prime factor set of n = 12 is (p2, p1,po) = (2,2, 3), with 7 =3
e i =8 and j = 11 are mapped in the (2,2, 3)-based representation as

8 — {1}2 X {0}2 X {2}3, 11 — {1}2 X {1}2 X {2}3
o they differ only at the sub-group N, =N,

e when [ = 1, agents i = 8 and j = 11 are connected with wé’ll)l =>=3

14



Example

(an) = (1273)a (anplap(J) = (2,273)
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p-Peer hyper-cuboid: Kronecker representation

p-peer hyper-cuboids of size n = H;;é P can be rewritten as
(1 () o
w0 =w o...owW oW,
where each pi X pr matrix W,gl) is defined by

(l) I if mOd(Z,T) 75 k
W’i} T : —
]1]1 if mod(l,7) =k

Finite- time consensus

H wo = H (W2 oW e e W)

=0
- -1 -1
é(l;[ (l)>®<l];([)w_£l)2>®...®(l]:!)wél))

= (5010 ) @@ (A 1f ) = 21,07

pr—1~ PT=17Dpr

(A) uses the property (A® B)(C' ® D) = AC ® BD

17



de Bruijn graphs

for n = p™, the de Bruijn graph Gap = (V, Wap, Eqp) is defined by

5 if (ir—2ir—3...%0)p = (Jr—1jr—2---J1)p
wij = i
0 otherwise,

where (i;_1i;_2...40), is the p-based representation of 4
e example: n =8, p=2,7=3

e connection between de Bruijn graphs and p-peer hyper-cuboids
W = POWeL(Q@MT foralll=0,1,...,7—1,

where {(P®,Q®)} are permutation matrices
[deBruijn’46, DCZ09] 18



Numerical demonstration: decentralized average consensus

e decentralized average consensus iterations

10!

Consensus Error
= - =
> 15 >

4 b IS

-
15}
|
©

101

xEkH) = W(k)xl(k), fori=1,...,n in parallel

e we plot the consensus error

=0 =5 % et -
i=1

Iterations

(0) ”2
avg |2
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Outline

Hierarchical banded factor graphs



Motivation
e p-peer hyper-cuboids revert to fully-connected graphs when n is prime

e data centers are not equidistant but formed in clusters
o intra-cluster communication is cheap, flexible and can be varied
o inter-cluster communication is expensive and should be minimized

Data Center 1

Client

Coordinator
DC1: Rack 1| node

DC1: Rack 2

Backbone Data Center 3

Internet

Data Center 2

DC3: Rack 1

d
1

DC3: Rack 2



Three-phase communication protocol

e phase 1: intra-cluster communication achieving finite-time consensus
e phase 2: limited inter-cluster communication
e phase 3: intra-cluster communication achieving finite-time consensus

we now focus on reducing the communication cost in phase 2

A two-block example

g {J1 } [Au Au} {J1 ] _ { JiAuJr JiAiede
Jao| | ATy Ag Ja (J1A122)T JoAsa s

and Jo = - -1 17

where n = ny + no with ny > ng, J; = - ]ln1 na 1L,

ny?

J1 A A Ji

Jo A{z A22 Jo

21



A two-block example

J— {J1 ] [Au AIQ] [Jl } _ [ JiAnJ1 J1Ads
Jo| |Aly  Ag J2 (J1A12 )T JoAsa s
J1 Ain | A J1
J2 A{Q A22 Jg

additional conditions can be imposed to increase the sparsity of A

22



A two-block example

J— {J1 ] [Au AIQ] [Jl } _ [ JiAnJ1 J1Ads
Jo| |Aly  Ag J2 (J1A12 )T JoAsa s

Ji Aio J1

s AT, J

additional conditions can be imposed to increase the sparsity of A

e no intra-cluster communication: A;; and Ass are diagonal



A two-block example

J— {J1 ] [Au AIQ] [Jl } _ { JiAnJ1 J1Ads
Jo| |Aly  Ag J2 (J1A12 )T JoAsa s

Jl Jl

JQ J2

additional conditions can be imposed to increase the sparsity of A
e no intra-cluster communication: A;; and Ass are diagonal

e ‘“one-to-one” inter-cluster communication



A two-block example

J— J1 A Al |4 [ J1AnJ J1 A ds
B Jg J2

Aly  Ag T (1A o)t JyAgs s
J1 Jl
J2 J2

additional conditions can be imposed to increase the sparsity of A
e no intra-cluster communication: A;; and Asy are diagonal

e nonzeros in Ao only appear on the diagonal and are the same
no ni
2 1n, 0 i,

A= 0 Ly —n,

ny ng
Y Ty 0 |21,

22



Option 1: A, is only nonzero in the first entry

where

[ o B
1
1
A:
1
p Q2
0
L 0
2 2
ar =2 —ny 41, as = 2 —ny 41,
n

23



Option 2: the nonzero entries in A, are the same

recall n = nqy +n9 and ny > no

no ni
I, 0 I,

A=| 0 Iny_n| O
ﬂ[ng 0 ﬂlnl

n n

observe that this A is doubly stochastic

24



The general case

J = JoAJy

this factorization relies on a partition of n € Nxo:

.
n= >y ng withng> > n;forallkelr—1]
k=1 j=k+1

Jo = J1 @ - @ J; is block diagonal with Jj, := ;=117 € R™>*"

@ the direct sum of two matrices: X @Y = blkdiag(X,Y)

each Ji can be further decomposed into, e.g., p-peer hyper-cuboids

we provide two options for the A-factor
o A can be hierarchically partitioned as banded matrices
o A can be decomposed as product of several banded matrices

25



Hierarchically banded (HB) factorization

S |\ N

J = JoAJy
e (density) reduced hierarchically banded (RHB) factorization
o Arpg has limited nonzeros in each band

e doubly stochastic hierarchically banded (DSHB) factorization
o Apsyg is symmetric, doubly stochastic, and hierarchically banded

26



Sequential doubly stochastic (SDS) factorization

J = JoALJo with 4, = SMW @ ... g(r=1)
J = JoArJo with Ag = -1 gr=2) ... g1

where {S®*)} C S™ are symmetric and doubly stochastic with banded pattern

S S(T—2) S(r=1)

27



Summary: graph sequences with finite-time consensus

e one-peer exponential graphs [ALBR'19, YYC+'21, NJYU'23]
o n =27, maximum degree is 1
o they share the same eigenspace

e p-peer hyper-cuboids [NJYU'23]
o any n € N>, 7 is the number of prime factors
o maximum degree is the largest prime factor of n
o includes one-peer hyper-cubes [SLJJ'16] as special cases

e sparse factorization of J of the form [JNUY’'24]

J:JOAJO, where Jo=J1 ® - P J;

o (density) reduced hierarchically banded factorization: Agpg
o doubly stochastic hierarchically banded factorization: Apsug
o sequential doubly stochastic (SDS) factorization: AL and Ag

AL =85Wg®P ... g0 Ag = SMglr-1 ... g
where {S(*)} C S™ are doubly stochastic with banded pattern

28



Summary

Graph sequences with finite-time consensus

topology size n max. deg. T
one-peer exponential  power of 2 1 logyn
. . largest .

-peer hyper-cuboid arbitrar . of prime factors
p-peer hyper-cubor trary prime factor 7 of pri "
one-peer hyper-cube  power of 2 1 logyn
de Bruijn power of p P log, n

Sparse factorization J = JyAJy
matrices in phase 2 ARHB ApsH AL AR S-factors
nnz n+7(r—1) ZT: kny, ZT: (28 — 1)ny, ZT: (2F = Dng  ng +2 XT: n;
k=1 k=1 k=1 i=k+1
Aimax T T T 271 2
# iter in phase 2 1 1 1 1 T—1

29



What is forthcoming

e introduce graph sequences with finite-time consensus (this talk)

e incorporate such graphs into existing decentralized algorithms
(talk 2 by Edward D. H. Nguyen)

e design new decentralized algorithms that allow time-varying topologies
(talk 3 by Bicheng Ying)
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