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Distributed optimization

minimize f(x) := 1
n

n∑
i=1

fi(x)

• distributed methods perform computation over a network (broader class)
• decentralized methods do so without central coordination (a subclass)
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Network topology in decentralized optimization
Classic assumptions on network topology
• static and defined beforehand, e.g., network sensor localization
• dynamic/time-varying: bounded eigenvalues

λminI ⪯ W (k) ⪯ λmaxI, for all iterations k

• agents are equidistant

Modern scenarios (e.g., high-performance computing (HPC), GPU)
• networks are flexible and cheaply rearranged
• networks are time-varying and might be disconnected
• agents are formed in clusters: intra-cluster communication is cheaper

This talk:

design new time-varying topologies with desirable properties
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Decentralized average consensus

Mixing matrix W ∈ Rn×n in decentralized optimization algorithms
• associated with a graph G = (V, E): Wij = 0 if {i, j} /∈ E

• a round of communication is represented as matrix–vector product

(Wy)i =
n∑

j=1
Wijyj =

∑
j∈Ni

Wijyj ;

Decentralized average consensus
• suppose each agent i ∈ V contains a vector xi ∈ Rd

• goal: to compute the average x = 1
n

∑n
i=1 xi in a decentralized manner

• decentralized averaging with mixing matrix W ∈ Rn×n

X(k+1) = WX(k), where X =
[
x1 x2 · · · xn

]T ∈ Rn×d

• it converges asymptotically for all X(0) if and only if

W1 = 1, W T1 = 1, 1 = |λ1| > |λ2| ≥ · · · ≥ |λn|
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Graph sequence with finite-time consensus property

the finite-time consensus property is defined for a given sequence of graphs

{G(l) ≡ (V, W (l), E(l))}τ−1
l=0

Consensus perspective: decentralized averaging converges in τ iterations

X(τ) = W (τ−1)W (τ−2) · · · W (1)W (0)X(0) = 1xT

Matrix perspective: {W (l)}τ−1
l=0 ⊂ Rn×n are doubly stochastic and

W (τ−1)W (τ−2) · · · W (1)W (0) = 1
n
11T =: J
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Preview

we study three classes of graph sequences with finite-time consensus

graph sequence size n τ

one-peer exponential n = 2τ log2 n
p-peer hyper-cuboids any n ∈ N≥2 # prime factors
SDS factor graphs any n ∈ N≥2 flexible∗

SDS: sequential doubly stochastic; ∗: τ is related to a partition n =
∑τ

k=1 nk

in the first two classes, we use the following convention to index W ∈ Rn×n

W = [wij ], i, j = 0, 1, . . . , n − 1
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One-peer exponential graphs

• for n ∈ N≥2, define τ := ⌊log2 n⌋ and {G(l)}τ−1
l=0 with weight matrices

w
(l)
ij =


1
2 if mod(j − i, n) = 2mod(l,τ)

1
2 if i = j

0 otherwise

0

1
2

3

4

5
6

7

0

1
2

3

4

5
6

7

0

1
2

3

4

5
6

7

• if n = 2τ for some τ ∈ N≥1, then {W (l)}τ−1
l=0 has finite-time consensus

[ALBR’19, YYC+’21, NJYU’23] 7



One-peer exponential graphs
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Detour: circulant matrix

• the n × n circulant matrix associated with c =
(
c0, c1, . . . , cn−1

)
is

C = Circ(c0, c1, . . . , cn−1) =



c0 cn−1 · · · c2 c1
c1 c0 cn−1 c2
... c1 c0

. . . . . .

cn−2
. . . . . . cn−1

cn−1 cn−2
. . . c1 c0


• all circulant matrices share the same eigenvectors:

C =
( 1√

n
F

)
·
(
diag(Fc)

)
·
( 1√

n
F H

)
,

where F is the n × n DFT matrix
• the eigenvalues are complex numbers:

λi = c0 + c1ωi + c2ω2i + · · · + cn−1ω(n−1)i, i = 0, 1, . . . , n − 1,

where ω = exp
( 2πȷ̂

n

)
is a primitive n-th root of unity
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Proof for finite-time consensus

• the mixing matrices of one-peer exponential graphs are circulant, and

W (τ−1) · · · W (1)W (0) =
( 1√

n
F

)
·
(
Λ(τ−1) · · · Λ(1)Λ(0)) ·

( 1√
n

F H
)
,

where Λ(l) = diag(Fc(l)) and c(l) is the first column of W (l)

• the first entry in Fc(l) is always 1 because F1,: = 1T

• it implies the first entry in Λ := Λ(τ−1) · · · Λ(1)Λ(0) is 1
• the other (diagonal) entries in Λ, Λii, are

1
2τ

(
(1 + ω(n−1)(i))(1 + ω(n−2)(i))(1 + ω(n−4)(i)) · · · (1 + ω(n−2τ−1)(i))

)
= 1

2τ

(
(1 + ω(−1)(i))(1 + ω(−2)(i))(1 + ω(−4)(i)) · · · (1 + ω(−2τ−1)(i))

)
= 1

2τ

n−1∑
l=0

ω−il = 1
2τ

(
1 − ω−in

1 − ω−i

)
= 0
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One-peer hyper-cube

• given n = 2τ with some τ ∈ N≥1, define

w
(l)
ij =


1
2 if (i ∧ j) = 2mod(l,τ)

1
2 if i = j

0 otherwise,

where i ∧ j represents the bit-wise XOR operation between i and j

• represent i in its binary form (iτ−1iτ−2 . . . i0)2, and the first if-condition is

(iτ−1iτ−2 · · · i0)2 ∧ (jτ−1jτ−2 · · · j0)2 = (0 · · · 0 1 0 · · · 0︸ ︷︷ ︸
mod(l,τ)

)2;

only the (mod(l, τ) + 1)-th digit in i’s and j’s binary form is different

[SLJJ’16] 11



One-peer hyper-cube
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Multi-base representation of integers

• extension of one-peer hyper-cube to arbitrary matrix size n relies on:
multi-base integer representation

• (pτ−1, pτ−2, . . . , p0)-based representation is an element in

Npτ−1 × Npτ−2 × · · · × Np0 ,

where Npj
is the group of nonnegative integers modulo pj ∈ N≥2

• for example, (2, 2, . . . , 2)-based representation is binary representation

• (2, 3)-based representation maps any integer in {0, 1, . . . , 5} to

0 → {0}2 × {0}3 1 → {0}2 × {1}3 2 → {0}2 × {2}3

3 → {1}2 × {0}3 4 → {1}2 × {1}3 5 → {1}2 × {2}3

• overload the notation as (ipτ−1 · · · ip1ip0)pτ−1,...,p1,p0
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p-Peer hyper-cuboid

• suppose the prime factorization of n ∈ N≥2 is n = pτ−1 · · · p1p0; then

w
(l)
ij =


1

pmod(l,τ)
if (i ∧pτ−1,...,p1,p0 j) = (0, · · · , 0, 1, 0, · · · , 0︸ ︷︷ ︸

mod(l,τ)

)pτ−1,...,p1,p0

1
pmod(l,τ)

if i = j

0 otherwise,

where i ∧pτ−1,...,p1,p0 j denotes the bit-wise XOR operation
between the (pτ−1, . . . , p1, p0)-based representation of i and j

• e.g., the prime factor set of n = 12 is (p2, p1, p0) = (2, 2, 3), with τ = 3

• i = 8 and j = 11 are mapped in the (2, 2, 3)-based representation as

8 → {1}2 × {0}2 × {2}3, 11 → {1}2 × {1}2 × {2}3

• they differ only at the sub-group Np1 = N2

• when l = 1, agents i = 8 and j = 11 are connected with w
(1)
8,11 = 1

p1
= 1

2
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Example

(n, τ) = (12, 3), (p2, p1, p0) = (2, 2, 3)
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p-Peer hyper-cuboid: Kronecker representation

p-peer hyper-cuboids of size n =
∏τ−1

k=0 pk can be rewritten as

W (l) = W̃
(l)
τ−1 ⊗ · · · ⊗ W̃

(l)
1 ⊗ W̃

(l)
0 ,

where each pk × pk matrix W̃
(l)
k is defined by

W̃
(l)
k =

{
Ipk

if mod(l, τ) ̸= k
1

pk
11T if mod(l, τ) = k

Finite-time consensus
τ−1∏
l=0

W (l) =
τ−1∏
l=0

(
W̃

(l)
τ−1 ⊗ W̃

(l)
τ−2 ⊗ · · · ⊗ W̃

(l)
0

)
▲=

( τ−1∏
l=0

W̃
(l)
τ−1

)
⊗

( τ−1∏
l=0

W̃
(l)
τ−2

)
⊗ · · · ⊗

( τ−1∏
l=0

W̃
(l)
0

)
=

(
1

pτ−1
1pτ−11

T
pτ−1

)
⊗ · · · ⊗

(
1

p0
1p01

T
p0

)
= 1

n1n1
T
n

(▲) uses the property (A ⊗ B)(C ⊗ D) = AC ⊗ BD
17



de Bruijn graphs

for n = pτ , the de Bruijn graph Gdb = (V, Wdb, Edb) is defined by

wij =
{

1
p if (iτ−2iτ−3 . . . i0)p = (jτ−1jτ−2 . . . j1)p

0 otherwise,

where (iτ−1iτ−2 . . . i0)p is the p-based representation of i

• example: n = 8, p = 2, τ = 3

4

0

1

5 2 7
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6

• connection between de Bruijn graphs and p-peer hyper-cuboids

W
(l)
hc = P (l)Wdb(Q(l))T for all l = 0, 1, . . . , τ − 1,

where {(P (l), Q(l))} are permutation matrices
[deBruijn’46, DCZ09] 18



Numerical demonstration: decentralized average consensus

• decentralized average consensus iterations

x
(k+1)
i = W (k)x

(k)
i , for i = 1, . . . , n in parallel

• we plot the consensus error

Ξ(k) = 1
n

n∑
i=1

∥x
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Motivation

• p-peer hyper-cuboids revert to fully-connected graphs when n is prime
• data centers are not equidistant but formed in clusters

◦ intra-cluster communication is cheap, flexible and can be varied
◦ inter-cluster communication is expensive and should be minimized

20



Three-phase communication protocol

• phase 1: intra-cluster communication achieving finite-time consensus
• phase 2: limited inter-cluster communication
• phase 3: intra-cluster communication achieving finite-time consensus

we now focus on reducing the communication cost in phase 2

A two-block example

J =
[
J1

J2

] [
A11 A12
AT

12 A22

] [
J1

J2

]
=

[
J1A11J1 J1A12J2

(J1A12J2)T J2A22J2

]
,

where n = n1 + n2 with n1 ≥ n2, J1 = 1
n1
1n11

T
n1

, and J2 = 1
n2
1n21

T
n2

J1

J2

A11

A22

A12

AT
12

J1

J2
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A two-block example

J =
[
J1

J2

] [
A11 A12
AT

12 A22
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=
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additional conditions can be imposed to increase the sparsity of A

• no intra-cluster communiction: A11 and A22 are diagonal
• “one-to-one” inter-cluster communication
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A two-block example

J =
[
J1

J2

] [
A11 A12
AT

12 A22

] [
J1

J2

]
=

[
J1A11J1 J1A12J2

(J1A12J2)T J2A22J2

]

J1

J2

J1

J2

additional conditions can be imposed to increase the sparsity of A

• no intra-cluster communication: A11 and A22 are diagonal
• nonzeros in A12 only appear on the diagonal and are the same

A =

 n2
n In2 0 n1

n In2

0 In1−n2 0
n1
n In2 0 n2

n In1


22



Option 1: A12 is only nonzero in the first entry

A =



α1 β
1 0

1
. . .

. . . 0
. . .

1
β α2

0 1
. . . . . .

0 1


where

α1 = n2
1

n
− n1 + 1, α2 = n2

2
n

− n2 + 1, β = n1n2

n

23



Option 2: the nonzero entries in A12 are the same

recall n = n1 + n2 and n1 ≥ n2

A =

 n2
n In2 0 n1

n In2

0 In1−n2 0
n1
n In2 0 n2

n In1



observe that this A is doubly stochastic
24



The general case

J = J0AJ0

• this factorization relies on a partition of n ∈ N≥2:

n =
τ∑

k=1
nk with nk ≥

τ∑
j=k+1

nj for all k ∈ [τ − 1]

• J0 := J1 ⊕ · · · ⊕ Jτ is block diagonal with Jk := 1
nk
11T ∈ Rnk×nk

• ⊕ the direct sum of two matrices: X ⊕ Y = blkdiag(X, Y )

• each Jk can be further decomposed into, e.g., p-peer hyper-cuboids

• we provide two options for the A-factor
◦ A can be hierarchically partitioned as banded matrices
◦ A can be decomposed as product of several banded matrices

25



Hierarchically banded (HB) factorization

n1

τ∑
j=2

nj = m1

n2

m2

J = J0AJ0

• (density) reduced hierarchically banded (RHB) factorization
◦ ARHB has limited nonzeros in each band

• doubly stochastic hierarchically banded (DSHB) factorization
◦ ADSHB is symmetric, doubly stochastic, and hierarchically banded

26



Sequential doubly stochastic (SDS) factorization

J = J0ALJ0 with AL = S(1)S(2) · · · S(τ−1)

J = J0ARJ0 with AR = S(τ−1)S(τ−2) · · · S(1)

where {S(k)} ⊂ Sn are symmetric and doubly stochastic with banded pattern

n1

S(1)

· · ·

S(τ−2) S(τ−1)

27



Summary: graph sequences with finite-time consensus

• one-peer exponential graphs [ALBR’19, YYC+’21, NJYU’23]
◦ n = 2τ , maximum degree is 1
◦ they share the same eigenspace

• p-peer hyper-cuboids [NJYU’23]
◦ any n ∈ N≥2, τ is the number of prime factors
◦ maximum degree is the largest prime factor of n
◦ includes one-peer hyper-cubes [SLJJ’16] as special cases

• sparse factorization of J of the form [JNUY’24]

J = J0AJ0, where J0 = J1 ⊕ · · · ⊕ Jτ

◦ (density) reduced hierarchically banded factorization: ARHB
◦ doubly stochastic hierarchically banded factorization: ADSHB
◦ sequential doubly stochastic (SDS) factorization: AL and AR

AL = S(1)S(2) · · · S(τ), AR = S(τ)S(τ−1) · · · S(1),

where {S(k)} ⊂ Sn are doubly stochastic with banded pattern
28



Summary

Graph sequences with finite-time consensus

topology size n max. deg. τ

one-peer exponential power of 2 1 log2 n

p-peer hyper-cuboid arbitrary largest
prime factor # of prime factors

one-peer hyper-cube power of 2 1 log2 n
de Bruijn power of p p logp n

Sparse factorization J = J0AJ0

matrices in phase 2 ARHB ADSHB AL AR S-factors

nnz n + τ(τ − 1)
τ∑

k=1
knk

τ∑
k=1

(2k − 1)nk

τ∑
k=1

(2k − 1)nk nk + 2
τ∑

i=k+1
ni

dmax τ τ τ 2τ−1 2
# iter in phase 2 1 1 1 1 τ − 1

29



What is forthcoming

• introduce graph sequences with finite-time consensus (this talk)

• incorporate such graphs into existing decentralized algorithms
(talk 2 by Edward D. H. Nguyen)

• design new decentralized algorithms that allow time-varying topologies
(talk 3 by Bicheng Ying)
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