On graph sequences with finite-time consensus

Xin Jiang

Department of Industrial and Systems Engineering Lehigh University

joint work with Edward D. H. Nguyen (Rice), César A. Uribe (Rice), Bicheng Ying (Google)

> 2024 INFORMS Optimization Society Conference March 24, 2024

Distributed optimization

minimize
$$f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

- distributed methods perform computation over a network (broader class)
- decentralized methods do so without central coordination (a subclass)

decentralized setting

centralized setting

5

Network topology in decentralized optimization

Classic assumptions on network topology

- static and defined beforehand, e.g., network sensor localization
- dynamic/time-varying: bounded eigenvalues

 $\lambda_{\min}I \preceq W^{(k)} \preceq \lambda_{\max}I$, for all iterations k

• agents are *equidistant*

Modern scenarios (e.g., high-performance computing (HPC), GPU)

- networks are flexible and cheaply rearranged
- networks are time-varying and might be disconnected
- agents are formed in clusters: intra-cluster communication is cheaper

This talk:

design new time-varying topologies with desirable properties

Decentralized average consensus

Mixing matrix $W \in \mathbb{R}^{n \times n}$ in decentralized optimization algorithms

- associated with a graph $G=(V,E) {:}~ W_{ij}=0$ if $\{i,j\} \notin E$
- a round of communication is represented as matrix-vector product

$$(Wy)_i = \sum_{j=1}^n W_{ij} y_j = \sum_{j \in \mathcal{N}_i} W_{ij} y_j;$$

Decentralized average consensus

- suppose each agent $i \in V$ contains a vector $x_i \in \mathbb{R}^d$
- goal: to compute the average $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ in a decentralized manner
- decentralized averaging with mixing matrix $W \in \mathbb{R}^{n \times n}$

$$X^{(k+1)} = WX^{(k)}, \quad \text{where } X = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T \in \mathbb{R}^{n \times d}$$

• it converges asymptotically for all $X^{(0)}$ if and only if

$$W\mathbb{1} = \mathbb{1}, \qquad W^T\mathbb{1} = \mathbb{1}, \qquad 1 = |\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$$

Graph sequence with finite-time consensus property

the finite-time consensus property is defined for a given sequence of graphs

$$\{G^{(l)} \equiv (V, W^{(l)}, E^{(l)})\}_{l=0}^{\tau-1}$$

Consensus perspective: decentralized averaging converges in τ iterations

$$X^{(\tau)} = W^{(\tau-1)}W^{(\tau-2)}\cdots W^{(1)}W^{(0)}X^{(0)} = \mathbb{1}\bar{x}^T$$

Matrix perspective: $\{W^{(l)}\}_{l=0}^{\tau-1} \subset \mathbb{R}^{n \times n}$ are doubly stochastic and

$$W^{(\tau-1)}W^{(\tau-2)}\cdots W^{(1)}W^{(0)} = \frac{1}{n}\mathbb{1}\mathbb{1}^T =: J$$

Preview

graph sequence	size n	τ
one-peer exponential <i>p</i> -peer hyper-cuboids	$n = 2^{\tau}$ any $n \in \mathbb{N}_{\geq 2}$	$\log_2 n$ # prime factors
SDS factor graphs	any $n \in \mathbb{N}_{\geq 2}^{\leq 2}$	flexible*

we study three classes of graph sequences with finite-time consensus

SDS: sequential doubly stochastic; *: τ is related to a partition $n=\sum_{k=1}^{\tau}n_k$

in the first two classes, we use the following convention to index $W \in \mathbb{R}^{n imes n}$

$$W = [w_{ij}], \quad i, j = 0, 1, \dots, n-1$$

p-Peer hyper-cuboids

Hierarchical banded factor graphs

• for $n \in \mathbb{N}_{\geq 2}$, define $\tau := \lfloor \log_2 n \rfloor$ and $\{G^{(l)}\}_{l=0}^{\tau-1}$ with weight matrices

$$w_{ij}^{(l)} = \begin{cases} \frac{1}{2} & \text{if } \operatorname{mod}(j-i,n) = 2^{\operatorname{mod}(l,\tau)} \\ \frac{1}{2} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

• if $n = 2^{\tau}$ for some $\tau \in \mathbb{N}_{\geq 1}$, then $\{W^{(l)}\}_{l=0}^{\tau-1}$ has finite-time consensus [ALBR'19, YYC+'21, NJYU'23]

$\frac{1}{2}$	0	0	0	0	0	0
$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0	0
Õ	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0
0	Õ	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0
0	0	Õ	$\frac{1}{2}$	$\frac{1}{2}$	0	0
0	0	0	Õ	$\frac{1}{2}$	$\frac{1}{2}$	0
0	0	0	0	Õ	$\frac{1}{2}$	$\frac{1}{2}$
0	0	0	0	0	õ	$\frac{1}{2}$
	$\frac{1}{2}$ $\frac{1}{2}$ 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$\begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix}$	$\begin{array}{c} 0\\ 1 \end{array}$	$\frac{1}{2}$	$\begin{array}{c} 0\\ 1 \end{array}$	0	0	0	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$
0	0 0	1 2 0		$\frac{1}{2}$	0	0	0
0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0
$\frac{1}{2}$	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	1 0
[0	$\frac{1}{2}$	0	0	0	0	0	$\frac{1}{2}$

$\left\lceil \frac{1}{2} \right\rceil$	0	0	0	$\frac{1}{2}$	0	0	0]
1 Õ	$\frac{1}{2}$	0	0	Õ	$\frac{1}{2}$	0	0
0	Õ	$\frac{1}{2}$	0	0	Õ	$\frac{1}{2}$	0
0	0	Õ	$\frac{1}{2}$	0	0	Õ	$\frac{1}{2}$
$\frac{1}{2}$	0	0	Õ	$\frac{1}{2}$	0	0	Õ
1 Õ	$\frac{1}{2}$	0	0	Õ	$\frac{1}{2}$	0	0
0	Õ	$\frac{1}{2}$	0	0	Õ	$\frac{1}{2}$	0
0	0	Õ	$\frac{1}{2}$	0	0	Õ	$\frac{1}{2}$

Detour: circulant matrix

• the $n \times n$ circulant matrix associated with $c = (c_0, c_1, \dots, c_{n-1})$ is

$$C = \operatorname{Circ}(c_0, c_1, \dots, c_{n-1}) = \begin{bmatrix} c_0 & c_{n-1} & \cdots & c_2 & c_1 \\ c_1 & c_0 & c_{n-1} & & c_2 \\ \vdots & c_1 & c_0 & \ddots & \ddots \\ c_{n-2} & & \ddots & \ddots & c_{n-1} \\ c_{n-1} & c_{n-2} & & \ddots & c_1 & c_0 \end{bmatrix}$$

• all circulant matrices share the same eigenvectors:

$$C = \left(\frac{1}{\sqrt{n}}F\right) \cdot \left(\operatorname{diag}(Fc)\right) \cdot \left(\frac{1}{\sqrt{n}}F^{H}\right),$$

where F is the $n\times n$ DFT matrix

• the eigenvalues are complex numbers:

$$\lambda_i = c_0 + c_1 \omega^i + c_2 \omega^{2i} + \dots + c_{n-1} \omega^{(n-1)i}, \quad i = 0, 1, \dots, n-1,$$

where $\omega = \exp\left(\frac{2\pi \hat{j}}{n}\right)$ is a primitive *n*-th root of unity

• the mixing matrices of one-peer exponential graphs are circulant, and

$$W^{(\tau-1)}\cdots W^{(1)}W^{(0)} = \left(\frac{1}{\sqrt{n}}F\right)\cdot \left(\Lambda^{(\tau-1)}\cdots\Lambda^{(1)}\Lambda^{(0)}\right)\cdot \left(\frac{1}{\sqrt{n}}F^H\right),$$

where $\Lambda^{(l)} = {\rm diag}(Fc^{(l)})$ and $c^{(l)}$ is the first column of $W^{(l)}$

- the first entry in $Fc^{(l)}$ is always 1 because $F_{1,:}=\mathbbm{1}^T$
- it implies the first entry in $\Lambda := \Lambda^{(\tau-1)} \cdots \Lambda^{(1)} \Lambda^{(0)}$ is 1
- the other (diagonal) entries in Λ , Λ_{ii} , are

$$\begin{aligned} &\frac{1}{2^{\tau}} \left((1 + \omega^{(n-1)(i)})(1 + \omega^{(n-2)(i)})(1 + \omega^{(n-4)(i)}) \cdots (1 + \omega^{(n-2^{\tau-1})(i)}) \right) \\ &= \frac{1}{2^{\tau}} \left((1 + \omega^{(-1)(i)})(1 + \omega^{(-2)(i)})(1 + \omega^{(-4)(i)}) \cdots (1 + \omega^{(-2^{\tau-1})(i)}) \right) \\ &= \frac{1}{2^{\tau}} \sum_{l=0}^{n-1} \omega^{-il} = \frac{1}{2^{\tau}} \left(\frac{1 - \omega^{-in}}{1 - \omega^{-i}} \right) = 0 \end{aligned}$$

 $\ensuremath{\textit{p}\mbox{-}\ensuremath{\mathsf{P}\mbox{-}}\ensuremath{\mathsf{e}\mbox{-}}\ximple}$ hyper-cuboids

Hierarchical banded factor graphs

One-peer hyper-cube

- given $n=2^\tau$ with some $\tau\in\mathbb{N}_{\geq1}$, define

$$w_{ij}^{(l)} = \begin{cases} \frac{1}{2} & \text{if } (i \wedge j) = 2^{\text{mod}(l,\tau)} \\ \frac{1}{2} & \text{if } i = j \\ 0 & \text{otherwise,} \end{cases}$$

where $i \wedge j$ represents the bit-wise XOR operation between i and j

• represent i in its binary form $(i_{\tau-1}i_{\tau-2}\ldots i_0)_2$, and the first if-condition is

$$(i_{\tau-1}i_{\tau-2}\cdots i_0)_2 \wedge (j_{\tau-1}j_{\tau-2}\cdots j_0)_2 = (0\cdots 01\underbrace{0\cdots 0}_{\mathrm{mod}(l,\tau)})_2;$$

only the $(mod(l, \tau) + 1)$ -th digit in i's and j's binary form is different

[SLJJ'16]

One-peer hyper-cube

Γ	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0	0	0]
	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0	0	0
	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0
	0	0	$\frac{\overline{1}}{2}$	$\frac{\overline{1}}{2}$	0	0	0	0
	0	0	Ō	Ō	$\frac{1}{2}$	$\frac{1}{2}$	0	0
	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0
1	0	0	0	0	0	0	$\frac{1}{2}$	1/2
	0	0	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$

$\frac{1}{2}$	0	$\frac{1}{2}$	0	0	0	0	0]
0	$\frac{1}{2}$	0	$\frac{1}{2}$	0	0	0	0
1/2	0	$\frac{1}{2}$	0	0	0	0	0
0	$\frac{1}{2}$	0	$\frac{1}{2}$	0	0	0	0
0	0	0	0	$\frac{1}{2}$	0	$\frac{1}{2}$	0
0	0	0	0	Ō	$\frac{1}{2}$	Ō	$\frac{1}{2}$
0	0	0	0	$\frac{1}{2}$	0	$\frac{1}{2}$	0
0	0	0	0	0	$\frac{1}{2}$	Ō	$\frac{1}{2}$

$\begin{bmatrix} \frac{1}{2}\\ 0 \end{bmatrix}$	$ \frac{0}{\frac{1}{2}} $	0 0	0 0		$ \frac{0}{\frac{1}{2}} $	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0\\ 0\end{array}$
0	0	$\frac{1}{2}$	0	0	0	$\frac{1}{2}$	0
0	0	Õ	$\frac{1}{2}$	0	0	Õ	$\frac{1}{2}$
1/2	0	0	0	$\frac{1}{2}$	0	0	0
Õ	$\frac{1}{2}$	0	0	Õ	$\frac{1}{2}$	0	0
0	0	$\frac{1}{2}$	0	0	0	1	0
0	0	Õ	$\frac{1}{2}$	0	0	Õ	$\frac{1}{2}$

Multi-base representation of integers

- extension of one-peer hyper-cube to arbitrary matrix size *n* relies on: multi-base integer representation
- $(p_{\tau-1}, p_{\tau-2}, \ldots, p_0)$ -based representation is an element in

 $\mathbb{N}_{p_{\tau-1}} \times \mathbb{N}_{p_{\tau-2}} \times \cdots \times \mathbb{N}_{p_0},$

where \mathbb{N}_{p_j} is the group of nonnegative integers modulo $p_j \in \mathbb{N}_{\geq 2}$

- for example, $(2, 2, \ldots, 2)$ -based representation is binary representation
- (2,3)-based representation maps any integer in $\{0,1,\ldots,5\}$ to

$$\begin{array}{ll} 0 \to \{0\}_2 \times \{0\}_3 & 1 \to \{0\}_2 \times \{1\}_3 & 2 \to \{0\}_2 \times \{2\}_3 \\ 3 \to \{1\}_2 \times \{0\}_3 & 4 \to \{1\}_2 \times \{1\}_3 & 5 \to \{1\}_2 \times \{2\}_3 \end{array}$$

- overload the notation as $(i_{p_{\tau-1}}\cdots i_{p_1}i_{p_0})_{p_{\tau-1},\dots,p_1,p_0}$

• suppose the prime factorization of $n \in \mathbb{N}_{\geq 2}$ is $n = p_{\tau-1} \cdots p_1 p_0$; then

$$w_{ij}^{(l)} = \begin{cases} \frac{1}{p_{\text{mod}(l,\tau)}} & \text{if } (i \wedge_{p_{\tau-1},\dots,p_1,p_0} j) = (0,\cdots,0,1,\underbrace{0,\cdots,0}_{\text{mod}(l,\tau)})_{p_{\tau-1},\dots,p_1,p_0} \\ \\ \frac{1}{p_{\text{mod}(l,\tau)}} & \text{if } i = j \\ 0 & \text{otherwise,} \end{cases}$$

where $i \wedge_{p_{\tau-1},\ldots,p_1,p_0} j$ denotes the bit-wise XOR operation between the $(p_{\tau-1},\ldots,p_1,p_0)$ -based representation of i and j

- e.g., the prime factor set of n=12 is $(p_2,p_1,p_0)=(2,2,3)$, with $\tau=3$
- i = 8 and j = 11 are mapped in the (2, 2, 3)-based representation as $8 \rightarrow \{1\}_2 \times \{0\}_2 \times \{2\}_3, \qquad 11 \rightarrow \{1\}_2 \times \{1\}_2 \times \{2\}_3$
- they differ only at the sub-group $\mathbb{N}_{p_1}=\mathbb{N}_2$
- when l = 1, agents i = 8 and j = 11 are connected with $w_{8,11}^{(1)} = \frac{1}{p_1} = \frac{1}{2}$

Example

$$(n, \tau) = (12, 3), \ (p_2, p_1, p_0) = (2, 2, 3)$$

 $G^{(0)}$

 $G^{(1)}$

 $G^{(2)}$

Example

 $G^{(0)}$

Γ	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	0	0	0	0	0	0	0
	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	0	0	0	0	0	0	0
	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	0	0	0	0	0	0	0
	0	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	0	0	0	0
	0	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	0	0	0	0
	0	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	0	0	0	0
	0	0	0	Ö	0	Ő	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	0
	0	0	0	0	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	0
	0	0	0	0	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	0
	0	0	0	0	0	0	0	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
	0	0	0	0	0	0	0	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
L	0	0	0	0	0	0	0	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$ -

p-Peer hyper-cuboid: Kronecker representation

p-peer hyper-cuboids of size $n = \prod_{k=0}^{\tau-1} p_k$ can be rewritten as $W^{(l)} = \widetilde{W}^{(l)}_{\tau-1} \otimes \cdots \otimes \widetilde{W}^{(l)}_1 \otimes \widetilde{W}^{(l)}_0,$

where each $p_k \times p_k$ matrix $\widetilde{W}_k^{(l)}$ is defined by

$$\widetilde{W}_k^{(l)} = \begin{cases} I_{p_k} & \text{ if } \operatorname{mod}(l,\tau) \neq k \\ \frac{1}{p_k} \mathbb{1} \mathbb{1}^T & \text{ if } \operatorname{mod}(l,\tau) = k \end{cases}$$

Finite-time consensus

$$\prod_{l=0}^{\tau-1} W^{(l)} = \prod_{l=0}^{\tau-1} \left(\widetilde{W}_{\tau-1}^{(l)} \otimes \widetilde{W}_{\tau-2}^{(l)} \otimes \cdots \otimes \widetilde{W}_{0}^{(l)} \right)$$
$$\triangleq \left(\prod_{l=0}^{\tau-1} \widetilde{W}_{\tau-1}^{(l)} \right) \otimes \left(\prod_{l=0}^{\tau-1} \widetilde{W}_{\tau-2}^{(l)} \right) \otimes \cdots \otimes \left(\prod_{l=0}^{\tau-1} \widetilde{W}_{0}^{(l)} \right)$$
$$= \left(\frac{1}{p_{\tau-1}} \mathbb{1}_{p_{\tau-1}} \mathbb{1}_{p_{\tau-1}}^T \right) \otimes \cdots \otimes \left(\frac{1}{p_0} \mathbb{1}_{p_0} \mathbb{1}_{p_0}^T \right) = \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^T$$

() uses the property $(A\otimes B)(C\otimes D)=AC\otimes BD$

de Bruijn graphs

for $n = p^{\tau}$, the de Bruijn graph $G_{db} = (V, W_{db}, E_{db})$ is defined by $w_{ij} = \begin{cases} \frac{1}{p} & \text{if } (i_{\tau-2}i_{\tau-3} \dots i_0)_p = (j_{\tau-1}j_{\tau-2} \dots j_1)_p \\ 0 & \text{otherwise,} \end{cases}$

where $(i_{\tau-1}i_{\tau-2}\ldots i_0)_p$ is the *p*-based representation of i

• example: n = 8, p = 2, $\tau = 3$

• connection between de Bruijn graphs and p-peer hyper-cuboids

$$W^{(l)}_{\rm hc}=P^{(l)}W_{\rm db}(Q^{(l)})^T\quad {\rm for \ all}\ l=0,1,\ldots,\tau-1,$$
 where $\{(P^{(l)},Q^{(l)})\}$ are permutation matrices [deBruijn'46, DCZ09]

Numerical demonstration: decentralized average consensus

• decentralized average consensus iterations

$$x_i^{(k+1)} = W^{(k)} x_i^{(k)}, \text{ for } i = 1, \dots, n \text{ in parallel}$$

we plot the consensus error

$$\Xi^{(k)} = \frac{1}{n} \sum_{i=1}^{n} \|x_i^{(k)} - x_{\text{avg}}^{(0)}\|_2^2$$

p-Peer hyper-cuboids

Hierarchical banded factor graphs

Motivation

- p-peer hyper-cuboids revert to fully-connected graphs when n is prime
- data centers are not equidistant but formed in clusters
 - $\circ\,$ intra-cluster communication is cheap, flexible and can be varied
 - $\circ~$ inter-cluster communication is expensive and should be minimized

Three-phase communication protocol

- phase 1: intra-cluster communication achieving finite-time consensus
- phase 2: limited inter-cluster communication
- phase 3: intra-cluster communication achieving finite-time consensus we now focus on reducing the communication cost in phase 2

A two-block example

$$J = \begin{bmatrix} J_1 \\ J_2 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix} \begin{bmatrix} J_1 \\ J_2 \end{bmatrix} = \begin{bmatrix} J_1 A_{11} J_1 & J_1 A_{12} J_2 \\ (J_1 A_{12} J_2)^T & J_2 A_{22} J_2 \end{bmatrix},$$

where $n = n_1 + n_2$ with $n_1 \ge n_2$, $J_1 = \frac{1}{n_1} \mathbb{1}_{n_1} \mathbb{1}_{n_1}^T$, and $J_2 = \frac{1}{n_2} \mathbb{1}_{n_2} \mathbb{1}_{n_2}^T$

J_1		A ₁₁	A_{12}	J_1	
	J_2	A_{12}^T	A_{22}		J_2

$$J = \begin{bmatrix} J_1 \\ J_2 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix} \begin{bmatrix} J_1 \\ J_2 \end{bmatrix} = \begin{bmatrix} J_1 A_{11} J_1 & J_1 A_{12} J_2 \\ (J_1 A_{12} J_2)^T & J_2 A_{22} J_2 \end{bmatrix}$$

additional conditions can be imposed to increase the sparsity of \boldsymbol{A}

$$J = \begin{bmatrix} J_1 & & & \\ & J_2 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix} \begin{bmatrix} J_1 & & & \\ & J_2 \end{bmatrix} = \begin{bmatrix} J_1 A_{11} J_1 & & J_1 A_{12} J_2 \\ (J_1 A_{12} J_2)^T & & J_2 A_{22} J_2 \end{bmatrix}$$

additional conditions can be imposed to increase the sparsity of \boldsymbol{A}

• no intra-cluster communication: A_{11} and A_{22} are diagonal

$$J = \begin{bmatrix} J_1 & & \\ & J_2 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix} \begin{bmatrix} J_1 & & \\ & J_2 \end{bmatrix} = \begin{bmatrix} J_1 A_{11} J_1 & J_1 A_{12} J_2 \\ (J_1 A_{12} J_2)^T & J_2 A_{22} J_2 \end{bmatrix}$$

additional conditions can be imposed to increase the sparsity of \boldsymbol{A}

- no intra-cluster communication: A_{11} and A_{22} are diagonal
- "one-to-one" inter-cluster communication

additional conditions can be imposed to increase the sparsity of A

- no intra-cluster communication: A_{11} and A_{22} are diagonal
- nonzeros in A_{12} only appear on the diagonal and are the same

$$A = \begin{bmatrix} \frac{n_2}{n} I_{n_2} & 0 & | \frac{n_1}{n} I_{n_2} \\ 0 & I_{n_1 - n_2} & 0 \\ \hline \frac{n_1}{n} I_{n_2} & 0 & | \frac{n_2}{n} I_{n_1} \end{bmatrix}$$

Option 1: A_{12} is only nonzero in the first entry

where

$$\alpha_1 = \frac{n_1^2}{n} - n_1 + 1, \qquad \alpha_2 = \frac{n_2^2}{n} - n_2 + 1, \qquad \beta = \frac{n_1 n_2}{n}$$

Option 2: the nonzero entries in A_{12} **are the same**

recall $n = n_1 + n_2$ and $n_1 \ge n_2$

$$A = \begin{bmatrix} \frac{n_2}{n} I_{n_2} & 0 & | \frac{n_1}{n} I_{n_2} \\ 0 & I_{n_1 - n_2} & 0 \\ \hline \frac{n_1}{n} I_{n_2} & 0 & | \frac{n_2}{n} I_{n_1} \end{bmatrix}$$

observe that this A is doubly stochastic

The general case

$$J = J_0 A J_0$$

• this factorization relies on a partition of $n \in \mathbb{N}_{\geq 2}$:

$$n = \sum_{k=1}^{\tau} n_k$$
 with $n_k \ge \sum_{j=k+1}^{\tau} n_j$ for all $k \in [\tau - 1]$

- $J_0 := J_1 \oplus \cdots \oplus J_{\tau}$ is block diagonal with $J_k := \frac{1}{n_k} \mathbb{1} \mathbb{1}^T \in \mathbb{R}^{n_k \times n_k}$
- \oplus the direct sum of two matrices: $X \oplus Y = \text{blkdiag}(X, Y)$
- each J_k can be further decomposed into, *e.g.*, *p*-peer hyper-cuboids
- $\bullet\,$ we provide two options for the $A\mbox{-}{\rm factor}\,$
 - \circ A can be *hierarchically* partitioned as banded matrices
 - $\circ~A$ can be decomposed as product of several banded matrices

Hierarchically banded (HB) factorization

 $J = J_0 \mathbf{A} J_0$

- (density) reduced hierarchically banded (RHB) factorization
 A_{RHB} has limited nonzeros in each band
- doubly stochastic hierarchically banded (DSHB) factorization
 A_{DSHB} is symmetric, doubly stochastic, and hierarchically banded

Sequential doubly stochastic (SDS) factorization

$$J = J_0 A_L J_0 \quad \text{with } A_L = S^{(1)} S^{(2)} \cdots S^{(\tau-1)} \\ J = J_0 A_R J_0 \quad \text{with } A_R = S^{(\tau-1)} S^{(\tau-2)} \cdots S^{(1)}$$

where $\{S^{(k)}\} \subset \mathbb{S}^n$ are symmetric and doubly stochastic with banded pattern

Summary: graph sequences with finite-time consensus

- one-peer exponential graphs [ALBR'19, YYC+'21, NJYU'23]
 - $\circ \ n=2^{\tau},$ maximum degree is 1
 - $\circ\,$ they share the same eigenspace
- *p*-peer hyper-cuboids [NJYU'23]
 - $\circ~$ any $n\in\mathbb{N}_{\geq2}\text{, }\tau$ is the number of prime factors
 - $\circ\,$ maximum degree is the largest prime factor of n
 - $\circ~$ includes one-peer hyper-cubes [SLJJ'16] as special cases
- sparse factorization of J of the form $\ensuremath{\left[\text{JNUY'24} \right]}$

 $J = J_0 A J_0$, where $J_0 = J_1 \oplus \cdots \oplus J_{\tau}$

 \circ (density) reduced hierarchically banded factorization: $A_{\rm RHB}$ \circ doubly stochastic hierarchically banded factorization: $A_{\rm DSHB}$ \circ sequential doubly stochastic (SDS) factorization: $A_{\rm L}$ and $A_{\rm R}$

$$A_{\mathsf{L}} = S^{(1)} S^{(2)} \cdots S^{(\tau)}, \qquad A_{\mathsf{R}} = S^{(\tau)} S^{(\tau-1)} \cdots S^{(1)},$$

where $\{S^{(k)}\}\subset \mathbb{S}^n$ are doubly stochastic with banded pattern

Graph sequences with finite-time consensus

topology	size n	max. deg.	au
one-peer exponential	power of 2	1	$\log_2 n$
p-peer hyper-cuboid	arbitrary	largest prime factor	# of prime factors
one-peer hyper-cube	power of 2	1	$\log_2 n$
de Bruijn	power of p	p	$\log_p n$

Sparse factorization $J = J_0 A J_0$

matrices in phase 2	A_{RHB}	A_{DSHB}	A_{L}	A_{R}	S-factors
nnz	$n + \tau(\tau - 1)$	$\sum_{k=1}^{\tau} k n_k$	$\sum_{k=1}^{\tau} (2^k - 1)n_k$	$\sum_{k=1}^{\tau} (2^k - 1)n_k$	$n_k + 2\sum_{i=k+1}^{\tau} n_i$
d_{\max}	au	au	au	$2^{\tau-1}$	2
# iter in phase 2	1	1	1	1	$\tau - 1$

What is forthcoming

- introduce graph sequences with finite-time consensus (this talk)
- incorporate such graphs into existing decentralized algorithms (talk 2 by Edward D. H. Nguyen)
- design new decentralized algorithms that allow time-varying topologies (talk 3 by Bicheng Ying)

References

- [NJYU'23] On graphs with finite-time consensus and their use in gradient tracking, arXiv:2311.01317
- [JNUY'24] Sparse factorization of the square all-ones matrix of arbitrary order, arXiv:2401.14596