
Recent advances in structure exploitation
for semidefinite programming

Xin Jiang
Lehigh University

PhD from University of California, Los Angeles

Harvard ENG-SCI 257: Semidefinite optimization and relaxation
April 17, 2024

sparsity vs. low rank

Outline

Sparse SDP
Chordal sparsity
SDP with chordal sparsity pattern
Exploiting sparsity in solving SDPs

Low-rank SDP

Clique decomposition of chordal sparsity pattern

decomposition for PSD completable matrices with chordal pattern

⇐⇒ ∩ ∩

X ∈ Sn
+(E, ?) X1 ⪰ 0 X2 ⪰ 0 X3 ⪰ 0

decomposition for PSD matrices with chordal pattern

⇐⇒ + +

Z ∈ Sn
+(E, 0) Z1 ⪰ 0 Z2 ⪰ 0 Z3 ⪰ 0

Grone et al. (1988); Griewank & Toint (1984), Agler et al. (1984) 2

Sparse Cholesky factorization

PAPT = LDLT

• A is positive definite, and P is a permutation matrix
• L is unit lower triangular, D positive diagonal

Sparsity pattern
PT (L+ LT)P ∈ Sn

E′

• fill-in E ′ \ E determines positions of added nonzeros

5
4

6
7

8

3

1
2

9

11
12

13
14

15

10

16
17

Pattern of A and L where A = LLT

5
4

6
7

8

3

1
2

9

11
12

13
14

15

10

16
17

Pattern of L̃ where P AP T = L̃L̃T 3

Cholesky factorization and chordal sparsity

Chordal pattern
if A ∈ Sn

+(E , 0), then there is a permutation P such that

PT (L+ LT)P ∈ Sn
E

A has a “zero fill” Cholesky factorization

Non-chordal pattern
If E is not chordal, then for every P there exists A ∈ Sn

+(E , 0) such that

PT (L+ LT)P /∈ Sn
E

Rose (1970) 4

Logarithmic barriers for sparse matrix cones

Definition: the function ϕ∗ : Sn
E → R with

ϕ∗(Z) = − log detZ, domϕ∗ = int(Sn
+(E , 0)) ≡ Sn

++(E , 0)

the log-barrier for Sn
+(E , ?) is the negative conjugate of ϕ∗:

ϕ(X) = sup
Z∈int(Sn

+(E,0))

(
− ⟨X,Z⟩ + log detZ

)

Value: efficiently computed from Cholesky factorization Z = LDLT

Gradient: the negative of the projected inverse
∇ϕ∗(Z) = −ΠE(Z−1)

Hessian: for arbitrary Y ∈ Sn
E :

∇2ϕ∗(Z)[Y] = d

dt
∇ϕ(S + tY)

∣∣∣
t=0

= ΠE(Z−1Y Z−1)

Andersen, Dahl, and Vandenberghe (2013) 5

Various formulations of SDP

Standard SDP

minimize ⟨C,X⟩ maximize ⟨b, y⟩
subject to A(X) = b subject to C − A∗(y) = Z

X ∈ Sn
+ Z ∈ Sn

+

Sparse SDP

minimize ⟨C,X⟩ maximize ⟨b, y⟩
subject to A(X) = b subject to C − A∗(y) = Z

X ∈ Sn
+(E , ?) Z ∈ Sn

+(E , 0)

6

Various formulations of SDP: decomposed SDP

Primal decomposed SDP

minimize
p∑

j=1
⟨Cj , Xj⟩

subject to
p∑

j=1
⟨Ai,j , Xj⟩ = b, i ∈ [m]

ECj∩Cℓ

(
ET

Cj
XjECj

− ET
Cℓ
XℓECℓ

)
ET

Cj∩Cℓ
= 0, ∀j ̸= ℓ, Cj ∩ Cℓ ̸= ∅

Xj ⪰ 0, j ∈ [p]

primal variables: Xj ∈ S|Cj |, j ∈ [p]

Dual decomposed SDP
maximize ⟨b, y⟩

subject to C − A∗(y) =
p∑

j=1
ET

Cj
ZkECj

Zj ⪰ 0, j ∈ [p]

dual variables: Zj ∈ S|Cj |, j ∈ [p]
7

Exploiting sparsity in solving SDPs

sparse SDP decomposed SDP
first-order methods
interior-point methods

Interior-point methods for SDP
• (Symmetric) IPMs for the standard SDP

exploit sparsity when forming “Schur complement” equations
Fukuda et al. (2000), Benson & Ye (2008), Gao et al. (2022)

• (Non-symmetric) IPMs for the sparse SDP
Fukuda et al. (2000), Srijuntongsiri et al. (2004), Andersen et al. (2010), . . .

• standard IPMs for the decomposed SDP
Nakata et al. (2003), Andersen et al. (2010), Zhang & Lavaei (2021), . . .

8

ADMM for decomposed SDP

minimize f(x) + g(y)
subject to Ax+By = c

Alternating direction method of multipliers (ADMM)
x(k+1) = argmin

x
Lρ(x, y(k), z(k))

y(k+1) = argmin
y

Lρ(x(k+1), y(k), z(k))

z(k+1) = z(k) + ρ(Ax(k+1) +By(k+1) − c)

where the augmented Lagrangian is defined as
Lρ(x, y, z) = f(x) + g(y) + ⟨z,Ax+By − c⟩ + ρ

2 ∥Ax+By − c∥2
2

ADMM applied to decomposed SDP
• different splitting yields different algorithms
• scalability comes at a price of accuracy
• computational bottleneck: eigen-decomposition needed for PSD projection
Zheng et al. (2020) 9

First-order methods for sparse SDP

Question: How to remove the bottleneck of eigen-decomposition in ADMM?

Attempt: Use generalized projection rather than Euclidean projection

Bregman divergence (generalized distance)

d(x, y) = ϕ(x) − ϕ(y) − ⟨∇ϕ(y), x− y⟩

(y, ϕ(y))

(x, ϕ(x))

d(x, y)

• kernel function ϕ is convex and continuously differentiable on int(domϕ)
Bregman (1967), Censor and Zenios (1997) 10

(Euclidean) proximal operator

Proximal operator (or proximal mapping) for closed convex function f
proxf (x) = argmin

y

(
f(y) + 1

2 ∥x− y∥2
2
)

it exists and is unique for all x ∈ Rn

Example
• f(x) is indicator function of closed convex set C: proxf is projection on C

proxf (x) = argmin
u∈C

∥u− x∥2
2 = ΠC(x)

• f(x) = ∥x∥1: proxf is the “soft-threshold” (shrinkage) operation

proxf (x)i =

xi − 1 xi > 1
0 |xi| ≤ 1
xi + 1 xi < −1

xi

proxf (x)i

Moreau (1965) 11

Generalized proximal operator

• proximal operator of f with Bregman distance d generated by ϕ:

proxϕ
f (y, a) = argmin

x

(
f(x) + ⟨a, x⟩ + d(x, y)

)
• for d(x, y) = 1

2 ∥x− y∥2
2, this is the standard proximal operator

proxϕ
f (y, a) = argmin

x

(
f(x) + ⟨a, x⟩ + 1

2 ∥x− y∥2
2
)

= argmin
x

(
f(x) + 1

2 ∥x− y + a∥2
2
)

= proxf (y − a)

Requirements
• minimizer x̂ exists and is unique for all y ∈ int(domϕ) and all a
• minimizer x̂ is inexpensive to compute

12

Example: relative entropy

d(x, y) =
n∑

i=1
(xi log(xi/yi) − xi + yi), dom d = Rn

+ × Rn
++

• the kernel function is

ϕ(x) =
n∑

i=1
xi log xi, domϕ = Rn

+

• generalized projection (prox-operator for f = δH) on H = {x | 1Tx = 1}

argmin
1T x=1

(
⟨a, x⟩ + d(x, y)

)
= 1

n∑
j=1

yje−aj

y1e
−a1

...
yne

−an

13

Generalized proximal operator: applications

• signal processing [Chao & Vandenberghe, 2018]

• optimal transport [Chambolle & Contreras, 2022]

• matrix optimization problem [Dhillon & Tropp, 2008]

• nonnegative matrix approximation [Dhillon & Sra, 2006; Li et al., 2012]

• statistical estimation [Taskar et al., 2006]

• machine learning [Kulis et al., 2009; Roman & d’Aspremont, 2020]

• etc.

14

Proximal splitting algorithms

minimize f(x) + g(Ax) + h(x)

• h is convex, differentiable, and L-smooth
• f and g are convex and have simple proximal operators
• A is large and structured

Algorithms
• g = 0: proximal gradient method x(k+1) = proxτf (x(k) − τ∇h(x(k)))
• h = 0: ADMM, Douglas–Rachford (DRS), PDHG (Chambolle–Pock)
• f = 0: Loris–Verhoeven (a.k.a. PDFP2O, PAPC)
• A = I: Davis–Yin
• three-operator splitting algorithms: Condat–Vũ, PD3O, PDDY

Boyd et al. (2010), Chambolle and Pock (2011, 2016)
Loris and Verhoeven (2011), Chen et al. (2013), Drori et al. (2015), Davis and Yin (2015)
Condat (2013), Vũ (2013), Yan (2018), Salim et al. (2020) 15

Condat–Vũ three-operator splitting algorithm

Algorithm

x(k+1) = proxτf

(
x(k) − τ(AT z(k) + ∇h(x(k)))

)
z(k+1) = proxσg∗

(
z(k) + σA(2x(k+1) − x(k))

)
Relations with other proximal methods

reduced
Condat–Vũ

Douglas–Rachfordprox-grad
with shift

Condat–Vũ PDHGLoris–Verhoeven
with shift

h = 0f = 0

h = 0f = 0

co
m

pl
et

io
n

A = I

co
m

pl
et

io
n

A = IA = I

similar diagrams also exist for PD3O and PDDY
“completion” trick: O’Connor and Vandenberghe (2020) 16

Bregman Condat–Vũ algorithm

x(k+1) = proxϕp
τf

(
x(k), τ(AT z(k) + ∇h(x(k)))

)
z(k+1) = proxϕd

σg∗

(
z(k),−σA(2x(k+1) − x(k))

)
Relations with other Bregman proximal methods

reduced Bregman
Condat–Vũ

Bregman
Douglas–Rachford

Bregman prox-grad
with shift

Bregman
Condat–Vũ

Bregman
Chambolle–Pock

Bregman Loris–Verhoeven
with shift

h = 0f = 0

h = 0f = 0

A = I A = IA = I

• “completion” trick may not be applicable in Bregman case
• similar diagram also exists for Bregman PD3O
• it is still unclear how to extend PDDY to Bregman distance
Chambolle and Pock (2016), Jiang and Vandenberghe (2023) 17

First-order proximal methods for SDP

Algorithmic toolbox
• Euclidean and Bregman proximal operators (and projections)
• Euclidean and Bregman proximal splitting methods

Optimization problem: (sparse) SDP
minimize ⟨C,X⟩ maximize ⟨b, y⟩
subject to A(X) = b subject to C − A∗(y) = Z

X ∈ K Z ∈ K∗

• (K,K∗) = (Sn
+,Sn

+) or (K,K∗) =
(
Sn

+(E , ?),Sn
+(E , 0)

)
• prior work considers (K,K∗) = (Sn

+,Sn
+) and (Dhillon & Tropp (2008))

ϕ̃(X) = − log detX, dom ϕ̃ = Sn
++

Logarithmic barrier for sparse SDPs
• ϕ∗(Z) = − log detZ is the log-det barrier for K∗ = Sn

+(E , 0)
• the primal barrier ϕ for K = Sn

+(E , ?) is the negative conjugative of ϕ∗(Z)
• for chordal E : efficient algorithms for computing ϕ, ϕ∗, ∇ϕ, ∇ϕ∗, etc.

18

Bregman proximal operator in sparse SDP

minimize ⟨C,X⟩
subject to A(X) = b, ⟨I,X⟩ = 1, X ∈ Sn

+(E , ?)
• objective restricted to ⟨I,X⟩ = trX = 1 and X ∈ Sn

+(E , ?)

f(X) = ⟨C,X⟩ + δH(X) + δSn
+(E,?)(X), where H = {X | trX = 1}

• prox-operator X̂ = proxϕ
f (Y,A), using Bregman distance generated by ϕ:

X̂ = argmin
X

(
f(X) + ⟨A,X⟩ + 1

τ d(X,Y)
)

= argmin
X

{⟨B,X⟩ + ϕ(X) | trX = 1},

where B ∈ Sn
E depends on Y , A, C, and τ

• owing to the definition of ϕ, the constraint X ∈ Sn
+(E , ?) is always satisfied

• dual problem (scalar λ is the multiplier for trX = 1)

maximize − λ+ log det(B + λI)

Jiang and Vandenberghe (2022) 19

Newton’s method for Bregman proximal operator

• use Newton’s method to find unique solution λ̂ of the nonlinear equation

tr((B + λI)−1) = 1 (with B + λI ≻ 0)

• for chordal sparsity patterns E , efficient algorithms exist for computing

g(λ) = tr((B + λI)−1), g′(λ) = − tr((B + λI)−2)

from sparse Cholesky factorization of B + λI

• from λ, the primal solution X̂ is computed as an projection on Sn
E :

X̂ = ΠE
(
(B + λI)−1)

complexity ≈ # Newton iterations × cost of sparse Cholesky factorization

Jiang and Vandenberghe (2022) 20

SDP relaxation of graph partitioning

minimize tr(PTLPX)
subject to diag(PXPT) = 1

X ⪰ 0

• columns of P are sparse basis of {x | 1Tx = 0}
• four problems from SDPLIB, four graphs from SuiteSparse collection

n
PDHG

iterations
time per Cholesky

factorization
Newton steps per
prox-evaluation

time per PDHG
iteration

gpp100 100 305 0.01 2.43 0.02
gpp124-1 124 392 0.01 2.00 0.02
gpp250-1 250 365 0.01 2.65 0.03
gpp500-1 500 394 0.02 3.01 0.07
delaunay_n10 1024 403 0.37 4.36 1.76
delaunay_n11 2048 420 0.48 4.70 2.54
delaunay_n12 4096 367 0.60 4.43 3.05
delaunay_n13 8192 375 1.02 4.42 4.98

21

Summary: sparse SDP

Chordal sparsity
• clique decomposition of two sparse matrix cones
• chordal sparsity offers zero fill-in sparse Cholesky factorization

Algorithms for SDPs with chordal sparsity pattern

sparse SDP decomposed SDP
interior-point methods
first-order methods

• interior-point methods are extensively studied and well developed
• first-order methods are relatively new

◦ proximal methods for decomposed SDP
consistency constraints and expensive eigen-decomposition

◦ Bregman proximal methods for sparse SDP
suitable Bregman distance =⇒ sparse Cholesky factorization

22

Outline

Sparse SDP

Low-rank SDP

Burer–Monteiro factorization

Standard primal SDP

minimize ⟨C,X⟩
subject to ⟨Ai, X⟩ = bi, i ∈ [m]

X ⪰ 0

• denote r⋆ = min{rank(X⋆) | X⋆ is optimal for the primal SDP}
• the rank r of any extreme point of the feasible set satisfies

r(r + 1)/2 ≤ m;

there is an optimal solution X⋆ whose rank satisfies the above inequality

Burer–Monteiro low-rank SDP
minimize ⟨C, Y Y T ⟩
subject to ⟨Ai, Y Y

T ⟩ = bi, i ∈ [m]

with variable Y ∈ Rn×r

• if r ≥ r⋆, the two problems share the same global minimum
Barvinok (1995), Pataki (1998); Burer and Monteiro (2003, 2005) 23

Can we solve BM-SDP to global optimum?

When does BM-SDP has no bad local minima?

No bad local minima

Problem formulation

minimize f(X) minimize g(Y) := f(Y Y T)
subject to X ⪰ 0

• the decision variables are X ∈ Sn (left) and Y ∈ Rn×r (right)
• r⋆ = rank(X⋆) is the optimal rank, and r is the search rank
• f is µ-strongly convex and L-smooth
• denote its condition number by κf = L/µ ∈ [1,∞)

No bad local minima: every second order critical point is a global minimizer

∇ψ(x) = 0, ∇2ψ(x) ⪰ 0 ⇐⇒ ψ(x) = ψ⋆

26

Guarantees for no bad local minima

Condition-based guarantees
• statistical learning: κf < ∞ with “enough” samples
• if κf < 3/2, then g has no bad local minima (Bhojanapalli et al. (2016))
• if κf ≥ 3, then counter-example exists (Zhang et al. (2018))

empirical evidence: well-conditioned problems have no bad local min
worse case: need κ ≈ 1 to eliminate bad local min

Overparameterization guarantees
• if r ≥ n, then g has no bad local minima (Boumal et al. (2020))

but it obviates the computational advantage of BM
• if r = Ω(n), then counter-example exists (Waldspurger & Waters (2020))

empirical evidence: r ≪ n escapes all bad local minima
worst case: need r ≈ n to eliminate bad local minima

Question: Can these two results talk to each other?
27

Guarantees for no bad local minima

Condition-based guarantees
• statistical learning: κf < ∞ with “enough” samples
• if κf < 3/2, then g has no bad local minima (Bhojanapalli et al. (2016))

• if κf ≥ 3, then counter-example exists (Zhang et al. (2018))

Overparameterization guarantees
• if r ≥ n, then g has no bad local minima (Boumal et al. (2020))

• if r = Ω(n), then counter-example exists (Waldspurger & Waters (2020))

Combined guarantees involving κ and overparameterization
• if r > r⋆ + γ, then g has no bad local minima
• if r ≤ (1 + γ)r⋆, then counter-example exists

where γ = 1
4 (κf − 1)2 − 1 (Zhang (2022))

28

Algorithms for BM-SDP

minimize f(X) minimize g(Y) := f(Y Y T)
subject to A(X) = b subject to A(X) = b

X ⪰ 0

• second-order methods?
• gradient-based methods

(Bhojanapalli et al. (2016), Zhang et al. (2022), Yang et al. (2022), . . .)

• augmented Lagrangian methods
(Burer & Monteiro (2003, 2005), Lee et al. (2022), Monteiro et al. (2024), . . .)

• proximal gradient methods (Bai, Duchi, & Mei (2019))

• ADMM (Chen & Goulart (2023))

• block coordinate descent methods (Erdogdu et al. (2022))

• manifold optimization (Wang & Hu (2023))

• more, and more to come
29

sparsity vs. low rank

sparsity and low rank

Motivation

Standard SDP
minimize ⟨C,X⟩ maximize ⟨b, y⟩
subject to A(X) = b subject to C − A∗(y) = Z

X ∈ Sn
+ Z ∈ Sn

+

• the data matrices C,A1, . . . , Am are sparse
• the optimal solution is often very dense
• in many applications, we want a low-rank solution

Question: Can we exploit data sparsity and low rank of solution?

Sparse SDP
minimize ⟨C,X⟩ maximize ⟨b, y⟩
subject to A(X) = b subject to C − A∗(y) = Z

X ∈ Sn
+(E , ?) Z ∈ Sn

+(E , 0)

• primal optimum X◦ ∈ Sn
+(E , ?) is sparse (or incomplete)

• any completion X• is a solution for the original SDP
30

Minimum rank PSD completion with chordal sparsity

recall that A ∈ Sn
E has a positive semidefinite completion if and only if

ACiCi
⪰ 0 for all cliques Ci

PSD completable A

AC1C1 ⪰ 0

AC2C2 ⪰ 0

AC3C3 ⪰ 0

Minimum rank PSD completion
if E is chordal, then there is a PSD completion X ∈ Sn

+ with rank
rank(X) = max

cliques Ci

rank(ACiCi)

Dancis (1992) 31

Two-block completion problem

find the minimum rank positive semidefinite completion of

A =

A11 A12 0
A21 A22 A23
0 A32 A33

• a PSD completion exists if and only if[
A11 A12
A21 A22

]
⪰ 0,

[
A22 A23
A32 A33

]
⪰ 0

• define r = max{r1, r2} where

r1 = rank
[
A11 A12
A21 A22

]
, r2 = rank

[
A22 A23
A32 A33

]
32

Two-block completion algorithm

• compute matrices U , V , Ṽ , W of column dimension r such that[
A11 A12
A21 A22

]
=

[
U
V

] [
U
V

]T

,

[
A22 A23
A32 A33

]
=

[
Ṽ
W

] [
Ṽ
W

]T

• since V V T = Ṽ Ṽ T , the matrices V and Ṽ have SVDs

V = PΣQT
1 , Ṽ = PΣQT

2 ;

hence V = Ṽ Q, where Q = Q2Q
T
1 is an orthogonal r × r matrix

• a completion of rank r is given byUQT

Ṽ
W

 UQT

Ṽ
W

T

=

 A11 A12 UQTWT

A21 A22 A23
WQUT A32 A33

33

SDP relaxation of optimal power flow problem

MOSEK 8 SeDuMi v1.05 SDPT3 v4.0

n
max.
clique rank(X◦) rank(X•) rank(X◦) rank(X•) rank(X◦) rank(X•)

IEEE-118 118 20 1 1 1 1 1 1
IEEE-300 300 17 5 1 5 1 5 1
2383wp 2383 31 17 1 17 1 17 1
2736sp 2736 30 1 1 1 1 1 1
2737sop 2737 29 44 1 43 1 43 1
2746wop 2746 30 32 1 32 1 32 1
2746wp 2746 31 1 1 1 1 1 1
3012wp 3012 32 346 13 346 13 337 17
3120sp 3120 32 514 27 572 32 519 27
3375wp 3375 33 451 19 451 19 454 21

• benchmark problems from Matpower package
• rank is number of eigenvalues greater than 10−5√

nλmax

• X◦ is the (Hermitian) solution of sparse SDP relaxation
• X• is minimum rank PSD completion of ΠE(X◦)
Jiang, Sun, Andersen, and Vandenberghe (2023) 34

Summary

Exploiting chordal sparsity
• key properties: clique decomposition and zero fill-in Cholesky factorization
• interior-point methods are well studied
• development of first-order methods is far from mature

Exploiting low rank via Burer–Monteiro factorization
• various theoretical guarantees for no bad local minima
• first-order methods are prevalent

Minimum low rank PSD completion with chordal sparsity
• minimum rank PSD completion is easy when E is chordal
• NP-hard when E is not chordal
• can be used as a post-processing technique after solving sparse SDP

35

	Sparse SDP
	Chordal sparsity
	SDP with chordal sparsity pattern
	Exploiting sparsity in solving SDPs

	Low-rank SDP

