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Course logistics

• weekly homework: due on Friday via Gradescope
• a project (tentative)
• midterm: open-book, Tuesday, May 4, 4pm–5:50pm (in class)
• final: open-book, Monday, June 7, 6:30pm-9:30pm
• course materials: on CCLE

ECE133A Applied numerical computing discussion-2

https://www.gradescope.com


Introduction to MATLAB

• you have free access to MATLAB via SEASNET student account
• the official site offers a nice start-up tutorial
• you are not expected to have a strong background in programming
• the programs you write will use only a tiny subset of MATLAB features
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http://www.seasnet.ucla.edu/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/support/learn-with-matlab-tutorials.html?requestedDomain=www.mathworks.com


Introduction to Julia

• Julia is a new programming language for scientific computing
• friendly syntax for building math constructs like vectors, matrices
• official site: you can download the software and find a tutorial there
• Jupyter is a open-source web application on which you can create and share
live codes, visualizations, and narrative text
• Julia companion for textbook
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https://julialang.org/
http://jupyter.org/
https://web.stanford.edu/~boyd/vmls
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Complexity

Flop count
• 1 flop = one basic arithmetic operation in R or C
• flop count is the total number of operations in an algorithm
• keep dominant term (with coefficients)

(1/3)n3 + 100n2 + 10n+ 5 ≈ (1/3)n3

Examples
• inner product between two n-vectors: 2n− 1 ≈ 2n flops
• matrix–vector multiplication of m× n matrix A and n-vector x:

y = Ax (2n− 1)m ≈ 2mn flops

• product of m× n matrix A and n× p matrix B:

C = AB mp(2n− 1) ≈ 2mnp flops
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Matrix representation: adjacency matrices

suppose A is the adjacency matrix of a directed graph with n vertices

Aij =
{

1 there is a edge from vertex j to vertex i
0 otherwise

A =


0 1 0 0 1
1 0 1 0 0
0 0 0 1 1
1 0 0 0 0
0 0 0 1 0

 , A2 =


1 0 1 1 0
0 1 0 1 2
1 0 0 1 0
0 1 0 0 1
1 0 0 1 0



1

2 3

4

5
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Matrix representation: adjacency matrices

examine the expression for the i, j element of the square of A:

(A2)ij =
n∑
k=1

AikAkj

what’s the graph associated with B = I +A?

now show the equivalence between
• all the elements of the matrix (I +A)n−1 are positive
• for any vertex i and j, there is a directed path from i to j
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Regression line

let a, b be two real n-vectors, and denote

ma = avg(a) = 1Ta
n
, mb = avg(b) = 1T b

n
,

sa = std(a) = 1√
n
‖a−ma1‖, sb = std(b) = 1√

n
‖b−mb1‖

ρ = 1
n

(a−ma1)T (b−mb1)
sasb

we fit a straight line to the points (ak, bk), by minimizing

J = 1
n

n∑
k=1

(c1 + c2ak − bk)2 = 1
n
‖c11 + c2a− b‖2

we found that the optimal coefficients are c2 = ρsa/sb and c1 = mb −mac2

show that for those values of c1 and c2, we have J = (1− ρ2)s2
b
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Matrix inverse

for a square matrix A ∈ Rn×n, nonsingular = invertible

B is the inverse of A ⇐⇒ AB = I, BA = I

the following four properties are equivalent
1. A is left invertible
2. the columns of A are linearly independent
3. A is right invertible
4. the rows of A are linearly independent

Exercise: are the following matrices nonsingular?
• A = abT where a and b are n-vectors and n > 1
• A = I − abT where a and b are n-vectors with ‖a‖‖b‖ < 1
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Examples on matrix inverse

suppose A is a nonsingular n× n matrix, u, v are n-vectors, vTA−1u 6= −1

show that A+ uvT is nonsingular with inverse

(A+ uvT )−1 = A−1 − 1
1 + vTA−1u

A−1uvTA−1

consider the (n+ 1)× (n+ 1) matrix A =
[
I a
aT 0

]
, where a is an n-vector

1. when is A invertible?
2. assuming A is invertible, give an expression for the inverse matrix A−1
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Example: Vandermonde matrix

A =


1 t1 t21 · · · tn−1

1
1 t2 t22 · · · tn−1

2
...

...
...

. . .
...

1 tn t2n · · · tn−1
n

 with ti 6= tj for i 6= j

we show that A is nonsingular by showing that Ax = 0 only if x = 0
• Ax = 0 means p(t1) = p(t2) = · · · = p(tn) = 0 where

p(t) = x1 + x2t+ x3t
2 + · · ·+ xnt

n−1

p(t) is a polynomial of degree n− 1 or less
• if x 6= 0, then p(t) cannot have more than n− 1 distinct real roots
• therefore p(t1) = · · · = p(tn) = 0 is only possible if x = 0
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Polynomial interpolation

in this problem we construct polynomials

p(t) = x1 + x2t+ x3t
2 + · · ·+ xnt

n−1

to interpolate points on the graph of the function f(t) = 1/(1 + 25t2)
we first generate n pairs (ti, yi). We then solve a set of linear equations


1 t1 t21 · · · tn−1

1
1 t2 t22 · · · tn−1

2
...

...
...

. . .
...

1 tn t2n · · · tn−1
n



x1
x2
...

xn−1
xn

 =


y1
y2
...

yn−1
yn


to find the coefficients xi
we then plot the polynomials and the function f in the interval [−1, 1]
the figures below show the interpolation for n = 5, 10, 15, 16, respectively
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Example on interpolation

express the following problem as a set of linear equations Ax = b

find a rational function

f(t) = x1 + x2t+ x3t
2

1 + x4t+ x5t2

that satisfies the five conditions

f(0) = b1, f (1)(0) = b2,
f (2)(0)

2 = b3,
f (3)(0)

6 = b4,
f (5)(0)

24 = b5,

where b1, . . . , b5 are given
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Left inverse and right inverse

for tall matrices A ∈ Rm×n (m > n), the following properties are equivalent
1. A is left invertible
2. the columns of A are linearly independent
3. ATA is nonsingular
the pseudo-inverse of such matrices is given by A† = (ATA)−1AT

for wide matrices A ∈ Rm×n (m < n), the following properties are equivalent
1. A is right invertible
2. the rows of A are linearly independent
3. AAT is nonsingular
the pseudo-inverse of such matrices is given by A† = AT (AAT )−1
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Pseudo-inverse

tall matrix (m > n) wide matrix (m < n) nonsingular matrix

with independent cols with independent rows (m = n)

A† = (ATA)−1AT A† = AT (AAT )−1 A† = A−1

ATA is nonsingular AAT is nonsingular

A†A = I AA† = I

existence unique
inverse square nonsingular Y
left inverse matrix with linearly independent cols N
right inverse matrix with linearly independent rows N
pseudo-inverse all matrices Y
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Example on pseudo-inverse

(AB)† = B†A†? (N)

consider the following example

A =
[
1 1

]
, B =

[
2 0
0 1

]
, AB =

[
2 1

]
the pseudo-inverses are

A† =
[
1/2
1/2

]
, B† =

[
1/2 0
0 1

]
, (AB)† =

[
2/5
1/5

]
we have (AB)(B†A†) = I but B†A† 6= (AB)†

• is (N) true when A has linearly independent columns and B is nonsingular?
• is (N) true when A is nonsingular and B has linearly independent columns?
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Orthogonal matrices

Tall matrix with orthonormal columns

ATA = I, AAT 6= I

• properties: preservation of inner products, norms, distance, and angles
• left-invertibility
• projection of x on the range of A: AAT b

Orthogonal matrices: a square real matrix with orthonormal columns

QTQ = I, QQT = I, Q−1 = QT

• examples: permutation matrix, plane rotation, reflector
• linear equation with orthogonal matrix

Exercise: when is a matrix lower-triangular and orthogonal?
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Examples on orthogonal matrices

let Q be an n× n orthogonal matrix, partitioned as

Q =
[
Q1 Q2

]
where Q1 ∈ Rn×m and Q2 ∈ Rn×(n−m) (assume 0 < m < n)
consider the matrix A = Q1Q

T
1 −Q2Q

T
2

1. show that A = 2Q1Q
T
1 − I = I − 2Q2Q

T
2

2. show that A is orthogonal

for what property of the matrix B is a matrix of the form

A = 1√
2

[
I BT

−B I

]
orthogonal? nonsingular?

ECE133A Applied numerical computing discussion-18



Example on orthogonal matrices

let a be an n-vector with ‖a‖ = 1; define the 2n× 2n matrix

A =
[

aaT I − aaT
I − aaT aaT

]
1. show that A is orthogonal
2. now suppose n = 2; given the plots of b and c, indicate on the figure the

2-vectors x, y that solve the 4× 4 equation[
aaT I − aaT

I − aaT aaT

] [
x
y

]
=
[
b
c

]

0 line through a and the origin

b

c
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Triangular matrices

• definition
• forward/back substitution
• inverse of a nonsingular triangular matrix A is also triangular, with

(A−1)ii = 1/Aii

• A−1 is computed by solving AX = I column by column ((1/3)n3 flops)

Exercise: the trace of a matrix is the sum of its diagonal elements; i.e.,

trA =
n∑
i=1

Aii

what is the complexity of computing tr(A−1) if A is triangular and nonsingular
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QR factorization

suppose A ∈ Rm×n has linearly independent columns; A can be factored as

A = QR

where
• Q is m× n with orthonormal columns
• R is n× n and upper-triangular with nonzero diagonal elements
• by convention, we require Rii > 0

Properties
• pseudo-inverse: A† = R−1QT

• range(A) = range(Q)
• projection of x on the range of A: AA†x = QQTx

• algorithms: Gram–Schimdt, Householder (2mn2 flops)
• application: linear equations, least squares
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LU factorization

LU factorization (with row pivoting)

A = PLU

• P permutation matrix, L unit lower triangular, U upper triangular
• exists if and only if A is nonsingular, but not unique
• complexity: (2/3)n3 if A is n× n

Solving linear equations Ax = b by LU factorization
1. factor A as A = PLU ((2/3)n3 flops)
2. solve (PLU)x = b in three steps
(a) permutation: z1 = P T b (0 flop)
(b) forward substitution: solve Lz2 = z1 (n2 flops)
(c) back substitution: solve Ux = z2 (n2 flops)

total complexity: (2/3)n3 + 2n2 ≈ (2/3)n3 flops
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Examples on solving linear equations

suppose A is an n× n matrix, and u and v are n-vectors
in each of the following cases, what is the complexity of computing the matrix

B = A−1uvTA−1

1. A is diagonal with nonzero diagonal elements
2. A is lower-triangular with nonzero diagonal elements
3. A is orthogonal
4. A is a general nonsingular matrix

assume we already have the LU factorization A = PLU
describe an algorithm for each of the following problems
1. compute the jth column of A−1

2. compute the sum of columns of A−1

3. compute the sum of rows of A−1
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Examples on solving linear equations

consider a square (n+m)× (n+m) matrix[
A B
C D

]
with A ∈ Rn×n and D ∈ Rm×m

describe efficient algorithms for computing the Schur complement

S = D − CA−1B

of each of the following types of matrices A
1. A is diagonal with nonzero diagonal elements
2. A is lower triangular with nonzero diagonal elements
3. A is a general nonsingular matrix
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Least squares

the least squares problem is an unconstrained optimization problem

minimize ‖Ax− b‖2

with variable x ∈ Rn and coefficients A ∈ Rm×n, b ∈ Rm

• assume A has linearly independent columns
• normal equation: ATAx̂ = AT b

• suppose QR factorization of A is given by A = QR

x̂ = A†b = (ATA)−1AT b = R−1QT b

1. compute QR factorization A = QR (2mn2 flops)
2. matrix-vector product d = QT b (2mn flops)
3. solve Rx = d by back substitution (n2 flops)
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Typical least squares problems

suppose x̂ is the solution for the least squares problem

minimize ‖Ax− b‖2;

and ŷ is the solution for the least squares problem

minimize ‖Ãy − b̃‖2

show that ŷ = g(x̂) by verifying

ÃT Ãg(x̂) = ÃT b̃, where ATAx̂ = AT b

Exercise: suppose QR factorization
[
A b

]
= QR can be partitioned as

Q =
[
Q1 Q2

]
, R =

[
R11 R12
0 R22

]
show that the LS solution x̃ls = R−1

11 R12 and R22 = ‖Ax̃ls − b‖
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Example: K-fold cross-validation

given m× n matrices A1, . . . , AK , and m-vectors b1, . . . , bK
matrices Ck is constructed by stacking A1, . . . , AK , but skipping Ak

Ck =



A1
...

Ak−1
Ak+1
...
AK


, dk =



b1
...

bk−1
bk+1
...
bK


Ck has size ((K − 1)m)× n; assume Ck has linearly independent columns

define x̂(k) as the solution of the least squares problem

minimize ‖Ckx− dk‖2

what is the complexity for computing K least squares solutions x̂(1), . . . , x̂(K)?
ECE133A Applied numerical computing discussion-27



Least squares data fitting

1. identify the unknown variable x
2. transfer nonlinear functions into a linear function of x
3. write the problem into least-squares form

Exercise: A8.3, A8.6
the m data points (ti, yi) are well approximated by a function of the form

f(t) = eαt+β

1 + eαt+β

formulate the following problem as a least squares problem:

find values of the parameters α, β such that

eαti+β

1 + eαti+β ≈ yi, i = 1, . . . ,m
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Multi-objective least squares

many other problems can be transformed into a least squares problem
• multi-objective least squares

minimize λ1‖A1x− b1‖2 + · · ·+ λk‖Akx− bk‖2

with all positive λi’s
• Tokhonov regularization (λ > 0)

minimize ‖Ax− y‖2 + λ‖x‖2

where the solution is

x̂ = (ATA+ λI)−1AT y = AT (AAT + λI)−1y

this avoids the QR factorization when A is very wide (m� n)
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Example: regularized least squares image deblurring

the vec operation creates an n2-vector x by converting an n× n matrix X in
the column-major order:

x = vec(X) =


X1:n,1
X1:n,2

...
X1:n,n


conversely, mat is the inverse operation of vec, i.e.,

X = mat(x) =
[
x1:n x(n+1):2n · · · x(n(n−1)+1):n2

]

ECE133A Applied numerical computing discussion-30



Example: regularized least squares image deblurring

we write the discrete Fourier transform in terms of the n× n DFT matrix W :

V = WUW V=fft2(U)

U = (1/n2)WHVWH U=ifft2(V)

then we can rewrite the discrete Fourier transform in vector form with
u = vec(U) and v = vec(V ), i.e.,

v = W̃u v=reshape(fft2(reshape(u,n,n)), n∧2, 1)

u = W̃−1v u=reshape(ifft2(reshape(v,n,n)), n∧2, 1)

where W̃ = W ⊗W ∈ Rn2×n2

since (1/n)WHW = I, we have

W̃HW̃ = n2I, W̃ W̃H = n2I, W̃−1 = 1
n2 W̃

H
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Example: regularized least squares image deblurring

now we are ready to discuss the image deblurring problem

it is a regularized least squares problem:

minimize ‖Ax− y‖2 + λ(‖Dvx‖2 + ‖Dhx‖2),

where A = T (B), Dv = T (E), and Dh = T (ET );
the coefficient matrices B ∈ Rn×n and E ∈ Rn×n are given

define function T : Rn×n → Rn×n:

T (X) = 1
n2 W̃

H diag(W̃x)W̃ ,

where x = vec(X)

this structure is called block-circulant with circulant blocks (BCCB)

the normal equation is given by

(AHA+ λDH
v Dv + λDH

h Dh)x = AHy

ECE133A Applied numerical computing discussion-32



Example: regularized least squares image deblurring
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Least norm problem

minimize ‖x‖2

subject to Cx = d

the variable is x ∈ Rn, and C ∈ Rp×n with p < n

Assumption: the coefficient matrix has linearly independent rows

Solution: the solution of the above least norm problem is

x̂ = C†d = CT (CCT )−1d.
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Constrained least squares

minimize ‖Ax− b‖2

subject to Cx = d

the variable is x ∈ Rn; A ∈ Rm×n, b ∈ Rm, C ∈ Rp×n, and d ∈ Rp

we make following assumptions in our discussion:

1. the stacked (m+ p)× n matrix
[
A
C

]
has linearly independent columns

2. C has linearly independent rows
hence, x̂ solves the constrained LS problem iff there exists a z such that[

ATA CT

C 0

] [
x̂
z

]
=
[
AT b
d

]
(the assumptions ensure that the matrix on the lefthand side is nonsingular)
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Example on constrained least squares

solve the following constrained least squares problems
1. A ∈ Rm×n has linearly independent columns, b ∈ Rn, c ∈ Rn, and d ∈ R

minimize ‖Ax− b‖2

subject to cTx = d

where the optimization variable is x ∈ Rn

2. A ∈ Rm×n has linearly independent columns, b ∈ Rm, c ∈ Rm

minimize ‖x− b‖2 + ‖y − c‖2

subject to ATx = AT y

where the optimization variable x, y ∈ Rm
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Example on constrained least squares

let A be an m× n matrix with linearly independent columns
1. show that x̃(i) is the solution for the constrained least squares problem

minimize ‖Ax‖2

subject to eTi x = −1 =⇒ x̃(i) = − 1
eTi (ATA)−1ei

(ATA)−1ei

2. show that x̂(i) is the solution for the constrained least squares problem

minimize ‖Ax− b‖2

subject to eTi x = 0 =⇒ x̂(i) = x̂− x̂i
eTi (ATA)−1ei

(ATA)−1ei

where x̂ is the minimizer of ‖Ax− b‖2
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Least squares summary

• (linear) least squares

minimize ‖Ax− b‖2 =⇒ x̂ = (ATA)−1AT b

• least norm

minimize ‖x‖2

subject to Cx = d
=⇒ x̂ = CT (CCT )−1d

• constrained least squares

minimize ‖Ax− b‖2

subject to Cx = d
=⇒

[
ATA CT

C 0

] [
x̂
z

]
=
[
AT b
d

]
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Nonlinear least squares

minimize g(x) = ‖f(x)‖2 =
m∑
i=1

f2
i (x)

• Gauss–Newton method: at iteration k, we solve a least squares problem

minimize ‖f(x(k)) +Df(x(k))(x− x(k))‖2

=⇒ x(k+1) = x(k) − (ATA)−1AT f(x(k)), where A = Df(x(k))

• Levenberg–Marquardt: at iteration k, we solve a regularized version

minimize ‖f(x(k)) +Df(x(k))(x− x(k))‖2 + λ(k)‖x− x(k)‖2

=⇒ x(k+1/2) = x(k) − (ATA+ λ(k)I)−1AT f(x(k)), where A = Df(x(k))

=⇒
{
x(k+1) = x(k+1/2), λ(k+1) = β1λ

(k) if ‖f(x(k+1/2))‖2 < ‖f(x(k))‖2

x(k+1) = x(k), λ(k+1) = β2λ
(k) otherwise
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Example: fitting an ellipse to points in a plane

an ellipse in a plane can be described as the set of points

f̂(t; θ) =
[
c1 + r cos(α+ t) + δ cos(α− t)
c2 + r sin(α+ t) + δ sin(α− t)

]
,

where t ∈ [0, 2π], and θ = (c1, c2, r, δ, α)
we consider the problem of fitting an ellipse to N points x(1), . . . , x(N) in a
plane:

minimize
N∑
i=1
‖f̂(t(i); θ)− x(i)‖2

where the optimization variables are t(1), . . . , t(N) and θ
formulate this as a nonlinear least squares problem, and then give expression
for the derivatives of the residuals
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Example: fitting an ellipse to points in a plane
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Positive definite matrices

• a symmetric n× n matrix A is positive definite if

xTAx > 0 for all x 6= 0

• every positive definite matrix is nonsingular
• every positive definite matrix has positive diagonal elements
• if the n× n matrix A is positive definite, then

BTAB

is positive definite for any B ∈ Rn×m with linearly independent columns
• A = BTB is positive definite if B has linearly independent columns
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Positive semidefinite matrices

• a symmetric n× n matrix A is positive semidefinite if

xTAx ≥ 0 for all x

• if A is positive semidefinite, but not positive definite, then it is singular
• every positive semidefinite matrix has nonnegative diagonal elements
• if the n× n matrix A is positive semidefinite, then

BTAB

is positive semidefinite for any n×m matrix B
• every Gram matrix A = BTB is positive semidefinite
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Examples on positive definiteness

are the following matrices positive definite?

• A =

 −1 2 3
2 5 −3
3 −3 2


• A = I − uuT where u is an n-vector with ‖u‖ < 1

• A =
[
I B
BT I +BTB

]
where B is an m× n matrix
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Cholesky factorization

every positive definite n× n matrix A can be factored as

A = RTR

where R ∈ Rn×n is upper triangular with positive diagonal elements
• complexity of computing R is (1/3)n3 flops
• practical method for testing positive definiteness
• used in solving Ax = b when A is positive definite
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Cholesky factorization algorithm

[
A11 A1,2:n
A2:n,1 A2:n,2:n

]
=
[
R11 0
RT1,2:n RT2:n,2:n

] [
R11 R1,2:n
0 R2:n,2:n

]
=
[

R2
11 R11R1,2:n

R11R
T
1,2:n RT1,2:nR1,2:n +RT2:n,2:nR2:n,2:n

]
1. compute first row of R:

R11 =
√
A11, R1,2:n = 1

R11
A1,2:n

2. compute 2, 2 block R2:n,2:n from

A2:n,2:n −RT1,2:nR1,2:n = RT2:n,2:nR2:n,2:n

which is a Cholesky factorization of order n− 1
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Examples on Cholesky factorization

• simple exercises: A11.8
• block matrix example: A11.13

B =
[
A u
uT 1

]
• a more complicated example: A11.21

A =

 1 avg(a) avg(b)
avg(a) rms(a)2 (aTn)/n
avg(b) (bTa)/n rms(b)2

 = 1
n

 n 1Ta 1T b
aT1 aTa aT b
bT1 bTa bT b


• exploit structure: A is positive definite with negative off-diagonal entries
1. show that its Cholesky factor R has negative above diagonal entries
2. show that R−1 has positive above diagonal entries
3. show that all entries of A−1 is positive
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Mathematical background

• gradient of differentiable function g : Rn → R

∇g(z) =
(
∂g

∂x1
(z), . . . , ∂g

∂xn
(z)
)
∈ Rn

• Hessian of g at z is a symmetric n× n matrix ∇2g(z) with entries

(∇2g(z))ij = ∂2g

∂xi∂xj
(z)

• composition with affine mapping: if g(x) = h(Cx+ d), then

∇g(x) = CT∇h(Cx+ d) ∇2g(x) = CT∇2h(Cx+ d)C
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Mathematical background

• affine approximation of g at z

ĝ(x) = g(z) + g(z)T (x− z)

• quadratic approximation of g at z

g̃(x) = g(z) +∇g(z)T (x− z) + 1
2(x− z)T∇2g(z)(x− z)

• Jacobian of differentiable function f : Rn → Rm

Df(z) =



∂f1

∂x1
(z) ∂f1

∂x2
(z) · · · ∂f1

∂xn
(z)

∂f2

∂x1
(z) ∂f2

∂x2
(z) · · · ∂f2

∂xn
(z)

...
...

...
∂fm
∂x1

(z) ∂fm
∂x2

(z) · · · ∂fm
∂xn

(z)


=

∇f1(z)T
...

∇fm(z)T


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Basic optimization theory

• local optimum and global optimum
• optimality conditions for twice differentiable function g
◦ necessary: if x? is locally optimal, then

∇g(x?) = 0 and ∇2g(x?) is positive semidefinite

◦ sufficient: x? is locally optimal only if

∇g(x?) = 0 and ∇2g(x?) is positive definite

◦ if g is a convex function, then

x? is optimal ⇐⇒ ∇g(x?) = 0
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Properties of matrix norms

Properties satisfied by all matrix norms
• nonnegative: ‖A‖2 ≥ 0 for all A
• positive definiteness: ‖A‖2 = 0 only if A = 0
• homogeneity: ‖βA‖2 = |β|‖A‖2

• triangle inequality: ‖A+B‖2 ≤ ‖A‖2 + ‖B‖2

Additional properties satisfied by the 2-norm ‖A‖2 = maxx6=0(‖Ax‖/‖x‖)
• ‖Ax‖ ≤ ‖A‖2‖x‖
• ‖AB‖2 ≤ ‖A‖2

• if A is nonsingular, then ‖A‖2‖A−1‖2 ≥ 1
• if A is nonsingular, then 1/‖A−1‖2 = minx 6=0(‖Ax‖/‖x‖)
• ‖AT ‖2 = ‖A‖
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Example on matrix norms

A ∈ Rm×n has linearly independent columns and QR factorization A = QR

1. show that the norm of A satisfies

‖A‖2 ≥ max{R11, R22, . . . , Rnn}, ‖A†‖2 ≥
1

min{R11, R22, . . . , Rnn}

(we follow the convention that Rii > 0)
2. show that ‖AA†‖2 = 1 (even when AA† 6= I)
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Example on matrix norms

1. if A is a square matrix with ‖I −A‖2 < 1. then A is nonsingular
2. if A is a nonsingular matrix, then

‖A−1‖2 ≤ ‖A−1 − I‖2 + 1, ‖A−1 − I‖2 ≤ ‖A−1‖2‖I −A‖2

3. if A is a square matrix with ‖I −A‖2 < 1, then

‖A−1‖2 ≤
1

1− ‖I −A‖2
, κ(A) ≤ 1 + ‖I −A‖2

1− ‖I −A‖2
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Condition and stability

Problem condition a mathematical problem is
• well conditioned if small changes in problem parameters (or problem data)
lead to small changes in the solution;
• ill-conditioned if small changes in problem parameters (or problem data)
can cause large changes in the solution

Cancellation occurs when
• we subtract two numbers that are almost equal;
• one or both numbers are subject to error

Numerical stability
refers to the accuracy of an algorithm in the presence of rounding errors
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IEEE floating point numbers

Binary floating point numbers

x = ±(.d1d2 . . . dn)2 · 2e

Machine precision εM = 2−53 ≈ 1.1102 · 10−16

Rounding
• a floating point number system is a finite set of numbers
• all other numbers must be rounded

Rounding rules
• numbers are rounded to the nearest floating point number
• ties are resolved by rounding to the number with least significant bit 0
("round to nearest even")
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Example on IEEE floating point numbers

the figure shows the function

f(x) = (1 + x)− 1
1 + (x− 1)

evaluated in IEEE double precision arithmetic in the interval [10−16, 10−15]

1 10

10
-16

0

1

2
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