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Course logistics

weekly homework: due on Friday via Gradescope

a project (tentative)

midterm: open-book, Tuesday, May 4, 4pm-5:50pm (in class)

final: open-book, Monday, June 7, 6:30pm-9:30pm

e course materials: on CCLE
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https://www.gradescope.com

Introduction to MATLAB

you have free access to MATLAB via SEASNET student account

the official site offers a nice start-up tutorial

you are not expected to have a strong background in programming

the programs you write will use only a tiny subset of MATLAB features
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http://www.seasnet.ucla.edu/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/support/learn-with-matlab-tutorials.html?requestedDomain=www.mathworks.com

Introduction to Julia

Julia is a new programming language for scientific computing

friendly syntax for building math constructs like vectors, matrices
e official site: you can download the software and find a tutorial there

Jupyter is a open-source web application on which you can create and share
live codes, visualizations, and narrative text

Julia companion for textbook
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https://julialang.org/
http://jupyter.org/
https://web.stanford.edu/~boyd/vmls
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Complexity

Flop count
e 1 flop = one basic arithmetic operation in R or C
e flop count is the total number of operations in an algorithm

e keep dominant term (with coefficients)
(1/3)n® 4 1000 4 10n + 5 ~ (1/3)n>

Examples
e inner product between two n-vectors: 2n — 1 ~ 2n flops

e matrix—vector multiplication of m x n matrix A and n-vector x:
y = Ax (2n — 1)m ~ 2mn flops
e product of m x n matrix A and n x p matrix B:
C=AB mp(2n — 1) ~ 2mnp flops
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Matrix representation: adjacency matrices

suppose A is the adjacency matrix of a directed graph with n vertices

A {1 there is a edge from vertex j to vertex ¢
ij =

0  otherwise

010 01 1 01 10

101 00 0101 2
A=10 0 0 1 1|, A?’=1]1 0 0 1 0

100 00 010 01

00010 100 1 0
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Matrix representation: adjacency matrices

examine the expression for the 7, j element of the square of A:

(A%)i; = AinAy;
=1

what's the graph associated with B =1+ A?

now show the equivalence between
e all the elements of the matrix (I + A)"~! are positive

e for any vertex ¢ and j, there is a directed path from i to j
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Regression line

let a, b be two real n-vectors, and denote

17 17
mqg = an(a) = J7 mp = an(b) =
n n
td(a) = —la — ma1| () = —I1b — m1|
sq = std(a) = —=||la — my1]|, sp=S8 =—|b—m
v ' Vil
~ 1(a—ma1)T(b—myl)
P=% SaSh
we fit a straight line to the points (ag, bx), by minimizing
J = 1 i(c + coay, — by)? = ch 14 coa — b||?
n ! n't

we found that the optimal coefficients are ¢y = psa /sy and ¢; = my — maca

show that for those values of ¢; and ¢z, we have J = (1 — p?)s?
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Matrix inverse

for a square matrix A € R"*™, nonsingular = invertible
Bistheinverseof A <— AB=1, BA=1

the following four properties are equivalent
1. Ais left invertible

2. the columns of A are linearly independent
3. A is right invertible

4. the rows of A are linearly independent

Exercise: are the following matrices nonsingular?
e A= ab” where a and b are n-vectors and n > 1

e A=1— ab? where a and b are n-vectors with ||al|||b]| < 1
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Examples on matrix inverse

suppose A is a nonsingular n x n matrix, u, v are n-vectors, v A7ty # —1
show that A + uv™ is nonsingular with inverse

1

_ A—l TA—I
14+0vTA 1y w

(A+wt) ™t =471

consider the (n + 1) X (n+ 1) matrix A = LLIT g} , where a is an n-vector

1. when is A invertible?

2. assuming A is invertible, give an expression for the inverse matrix A~!
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Example: Vandermonde matrix

1oty 2 - !

1 oty t3 o 3! _ o
A= . . . . . Wlthti#tjforl#j

Lot 2 -0 gt

we show that A is nonsingular by showing that Az =0 only if z =0
o Ax =0 means p(t1) = p(te) = -+ = p(t,) = 0 where

p(t) = 21 + zot + a3t + - F 2, t"

p(t) is a polynomial of degree n — 1 or less
o if x # 0, then p(t) cannot have more than n — 1 distinct real roots

o therefore p(t1) = --- = p(t,) = 0 is only possible if x =0
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Polynomial interpolation

in this problem we construct polynomials
p(t) = o1 + wot + 23t% + -+ F 2"t

to interpolate points on the graph of the function f(t) = 1/(1 + 25t?)

we first generate n pairs (¢;,y;). We then solve a set of linear equations

-1 T Y1
Lo ti t? 1 T2 Y2
e
1ty 3 -t} S
' _ Tn—1 Yn—1
1 t, t2 tn=t ;n Zn

to find the coefficients x;
we then plot the polynomials and the function f in the interval [—1, 1]

the figures below show the interpolation for n = 5,10, 15, 16, respectively
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Example on interpolation

express the following problem as a set of linear equations Ax = b

find a rational function

X —+ SCQt —+ $3t2

1) =
1®) 1+ 24t + 512

that satisfies the five conditions

f2(0)

3)
2 00

FO)=b1,  fO0) = b, c o1

:bSa

where by, ..., b5 are given
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Left inverse and right inverse

for tall matrices A € R™*™ (m > n), the following properties are equivalent
1. A'is left invertible

2. the columns of A are linearly independent

3. AT A is nonsingular

the pseudo-inverse of such matrices is given by At = (AT A)~1AT

for wide matrices A € R™*™ (m < n), the following properties are equivalent
1. A is right invertible

2. the rows of A are linearly independent

3. AAT is nonsingular

the pseudo-inverse of such matrices is given by AT = AT(AAT)~!
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tall matrix (m > n)

Pseudo-inverse

wide matrix (m < n)

nonsingular matrix

with independent cols  with independent rows (m=n)
Al = (AT A)~1AT AT = AT(AAT)! Al = A1
AT A is nonsingular AAT is nonsingular
ATA=1T AAT =1
existence unique
inverse square nonsingular Y
left inverse matrix with linearly independent cols

right inverse

pseudo-inverse

matrix with linearly independent rows

all matrices

N
N
Y
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Example on pseudo-inverse

(AB)T = BTA™? (a)

consider the following example

the pseudo-inverses are

1/2 1/2 0 2/5
A=l =[] wer= [
we have (AB)(BTAT) = I but BTAT # (AB)1

e is (A) true when A has linearly independent columns and B is nonsingular?

e is (A) true when A is nonsingular and B has linearly independent columns?
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Orthogonal matrices

Tall matrix with orthonormal columns
ATA=1, AAT £1

e properties: preservation of inner products, norms, distance, and angles
o left-invertibility

e projection of x on the range of A: AATD

Orthogonal matrices: a square real matrix with orthonormal columns
QTQ=1, QQ"=1, Q'=Q"

e examples: permutation matrix, plane rotation, reflector

e linear equation with orthogonal matrix

Exercise: when is a matrix lower-triangular and orthogonal?

ECE133A Applied numerical computing discussion-17



Examples on orthogonal matrices

let @ be an n x n orthogonal matrix, partitioned as
Q=[Q1 Q)

where Q; € R and Q, € R™*("~™) (assume 0 < m < n)
consider the matrix A = Q:QT — Q.QF

1. show that A =2Q.QT — I =1 —2Q,Q7T
2. show that A is orthogonal

for what property of the matrix B is a matrix of the form
1 T
S I B
V2 |-B I

orthogonal? nonsingular?
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Example on orthogonal matrices

let a be an n-vector with ||a|| = 1; define the 2n x 2n matrix

T T
aa I —aa
A= [I —aaT aaT ]

1. show that A is orthogonal
2. now suppose n = 2; given the plots of b and ¢, indicate on the figure the
2-vectors x, y that solve the 4 x 4 equation

aa® I—ad”] [z] [b
I—aa™ aa” y| e

line through a and the origin
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Triangular matrices

definition

forward/back substitution

inverse of a nonsingular triangular matrix A is also triangular, with

(AN =1/Ay

e A=l is computed by solving AX = I column by column ((1/3)n? flops)

Exercise: the trace of a matrix is the sum of its diagonal elements; i.e.,

n
trA= Z A“
i=1
what is the complexity of computing tr(A~1) if A is triangular and nonsingular
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QR factorization

suppose A € R™*™ has linearly independent columns; A can be factored as
A=QR

where

e () is m x n with orthonormal columns

e R isn x n and upper-triangular with nonzero diagonal elements
e by convention, we require R;; > 0

Properties

e pseudo-inverse: AT = R71QT

range(A) = range(Q)

projection of = on the range of A: AATx = QQTx

algorithms: Gram-Schimdt, Householder (2mn? flops)

application: linear equations, least squares
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LU factorization

LU factorization (with row pivoting)
A=PLU

e P permutation matrix, L unit lower triangular, U upper triangular
e exists if and only if A is nonsingular, but not unique

e complexity: (2/3)n® if Aisn xn

Solving linear equations Az = b by LU factorization

1. factor A as A = PLU ((2/3)n? flops)
2. solve (PLU)x = b in three steps

(a) permutation: z; = PTb (0 flop)
(b) forward substitution: solve Lzy = z; (n? flops)
(c) back substitution: solve Uz = 22 (n? flops)

total complexity: (2/3)n? + 2n? ~ (2/3)n? flops
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Examples on solving linear equations

suppose A is an n X n matrix, and u and v are n-vectors
in each of the following cases, what is the complexity of computing the matrix

B=AtuwTA™!
1. A is diagonal with nonzero diagonal elements
2. A'is lower-triangular with nonzero diagonal elements

3. A is orthogonal

4. Ais a general nonsingular matrix

assume we already have the LU factorization A = PLU
describe an algorithm for each of the following problems

1. compute the jth column of A~!
2. compute the sum of columns of A~1
3. compute the sum of rows of A~!
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Examples on solving linear equations

consider a square (n +m) X (n + m) matrix

A B
C D
with A € R"*"™ and D € R™*™

describe efficient algorithms for computing the Schur complement
S=D-CA'B

of each of the following types of matrices A
1. A is diagonal with nonzero diagonal elements
2. A is lower triangular with nonzero diagonal elements

3. A is a general nonsingular matrix
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Least squares

the least squares problem is an unconstrained optimization problem
minimize || Az — b]|?

with variable x € R™ and coefficients A € R™*™, b ¢ R™
e assume A has linearly independent columns

e normal equation: ATAz = AT

e suppose QR factorization of A is given by A = QR

i=Ab=(ATA) AT = R71QTh
1. compute QR factorization A = QR (2mn? flops)

2. matrix-vector product d = QTb (2mn flops)
3. solve Rz = d by back substitution (n? flops)
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Typical least squares problems

suppose Z is the solution for the least squares problem
minimize || Az — b||?;
and ¢ is the solution for the least squares problem
minimize || Ay — b||?
show that § = g(&) by verifying
AT Ag(2) = ATb, where ATAz = ATb
Exercise: suppose QR factorization [A b} = @R can be partitioned as

Q=[@ @]. Rz[RO“ g;j

show that the LS solution Zjs = Rl_llng and Roo = | AZ)s — b||
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Example: K-fold cross-validation

given m X n matrices Aq,..., Ag, and m-vectors by,...,bx
matrices C}, is constructed by stacking A1, ..., Ag, but skipping A

Al _bl_

- Ak‘—l _ bk.—l
Cr = @ = bry1

Ax bk |

C has size ((K — 1)m) x n; assume Cy has linearly independent columns

define 2(%) as the solution of the least squares problem

minimize || Crz — di|)*

what is the complexity for computing K least squares solutions #(1), ..., #(5)?
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Least squares data fitting

1. identify the unknown variable x
2. transfer nonlinear functions into a linear function of x

3. write the problem into least-squares form

Exercise: A8.3, A8.6
the m data points (¢;,y;) are well approximated by a function of the form
eot+B
10 =1 e
formulate the following problem as a least squares problem:
find values of the parameters «, 5 such that

eat,,—&-ﬁ
Wsyi, t=1,....,m

ECE133A Applied numerical computing discussion-28



Multi-objective least squares

many other problems can be transformed into a least squares problem

e multi-objective least squares
minimize A ||[Ayz — by || 4 -+ M| Apz — b ||?

with all positive \;'s

e Tokhonov regularization (A > 0)
minimize [|Az — y|* + A||z|?
where the solution is
&= (ATA+N)TATy = AT(AAT + M)y

this avoids the QR factorization when A is very wide (m < n)
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Example: regularized least squares image deblurring

the vec operation creates an n2-vector x by converting an n x n matrix X in
the column-major order:

Xl:n,l

Xl:n,2
x=vec(X) = .
Xl:n,n

conversely, mat is the inverse operation of vec, i.e.,

X = mat(x) = [xl:n T(n+1):2n " x(n(nfl)Jrl):n?]
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Example: regularized least squares image deblurring

we write the discrete Fourier transform in terms of the n x n DFT matrix W:
V=WUW V=££t2(U)
U=Q/m)WHVWH  u=ifft2(V)

then we can rewrite the discrete Fourier transform in vector form with
u=vec(U) and v = vec(V), ie,

v=Wu v=reshape (fft2(reshape(u,n,n)), nA2, 1)

u=W v u=reshape (ifft2(reshape(v,n,n)), nA2, 1)

where W = W @ W € R" *"”
since (1/n)WHW = I, we have
— 1 —

WHW =n21, WWH =n2I, Wl=_WH

ECE133A Applied numerical computing discussion-31



Example: regularized least squares image deblurring

now we are ready to discuss the image deblurring problem

it is a regularized least squares problem:
minimize || Az — y||* + A\(||Dyz||* + || Dnz|]?),

where A =T(B), D, = T(E), and Dy, = T(ET);
the coefficient matrices B € R"*" and E € R™*" are given

define function T : R™"*"™ — R™*"™:

1 ~ ~
T(X)= EWH diag(Wz)W,
where z = vec(X)

this structure is called block-circulant with circulant blocks (BCCB)

the normal equation is given by
(A" A+ ADI D, + ADI Dy)z = Afy
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Example: regularized least squares image deblurring
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Least norm problem

minimize ||
subject to Cr=d

the variable is z € R™, and C' € RP*"™ with p < n
Assumption: the coefficient matrix has linearly independent rows

Solution: the solution of the above least norm problem is

& =0Cld=ctcch) 1.
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Constrained least squares
minimize | Az — b||?
subjectto Cx=d
the variable is x € R"; A ¢ R™*"™, b€ R™, C € R?*", and d € R?

we make following assumptions in our discussion:

1. the stacked (m + p) X n matrix [é

] has linearly independent columns

2. C has linearly independent rows
hence, & solves the constrained LS problem iff there exists a z such that

ot =1

(the assumptions ensure that the matrix on the lefthand side is nonsingular)
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Example on constrained least squares

solve the following constrained least squares problems
1. A € R™*"™ has linearly independent columns, b € R”, c€ R", and d € R

minimize || Az — b]|?

subject to Tz =d

where the optimization variable is x € R"
2. A € R"™*™ has linearly independent columns, b € R™, ¢ € R™

minimize ||z — b||? + ||y — ¢||?
subject to ATz = ATy

where the optimization variable z,y € R™
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Example on constrained least squares

let A be an m X n matrix with linearly independent columns

1. show that #(* is the solution for the constrained least squares problem

minimize || Az|? N () — 1

AT AL
subject to elz = —1 T (AT A) e, (ATA) e

2. show that 2(?) is the solution for the constrained least squares problem

minimize || Az — B[/ O Rt A
subject to 6?1’ =0 = L=z elT(ATA)_lei (A A) €;

where # is the minimizer of || Az — b]|?
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Least squares summary

e (linear) least squares
minimize ||Az — b|? = &= (ATA)"1ATY
e least norm

minimize ||z

Y AT Ty—1
subjectto Cz=d = =CT(0C7)d

e constrained least squares

minimize || Az — b|? . [ATA C’T} {ﬂ

ATh
subject to Cx=d C 0 d
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Nonlinear least squares
minimize g(z) = || f(2)]* = Zﬂ

e Gauss—Newton method: at iteration k, we solve a least squares problem
minimize || f(z®)) + Df (™)) (z — 2*))| 2
— D = (AT A)7TAT f(x®)),  where A = Df(z®)
e Levenberg—Marquardt: at iteration k, we solve a regularized version
minimize  [|£(z%)) + Df(e®) (@ — 2®) |2 + Az — 20|
— Y2 = () (ATA 4 AR )71 AT £, where A = Df(z®

L [ath e o R A8 ) <
gD = gz \(k+1) — g\ (k) otherwise
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Example: fitting an ellipse to points in a plane

an ellipse in a plane can be described as the set of points

F(t:0) = ¢1 +rcos(a+t)+ dcos(a—t)
T leg+rsin(a+t) + dsin(a—t) |’
where t € [0,27], and 6 = (¢1, ¢a, 7,6, @)
we consider the problem of fitting an ellipse to N points (1), ... (™) in a
plane:

N
minimize Z 1F(tD;0) — 2|2
i=1

where the optimization variables are t(V, ... t() and
formulate this as a nonlinear least squares problem, and then give expression
for the derivatives of the residuals
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Example: fitting an ellipse to points in a plane

-
Nl __w—
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Positive definite matrices

e a symmetric n X n matrix A is positive definite if
2T Az >0 forallz#0

e every positive definite matrix is nonsingular

every positive definite matrix has positive diagonal elements

if the n x n matrix A is positive definite, then
BTAB

is positive definite for any B € R™*™ with linearly independent columns

A = BT B is positive definite if B has linearly independent columns
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Positive semidefinite matrices

e a symmetric n X n matrix A is positive semidefinite if
2T Az >0 forall

e if A is positive semidefinite, but not positive definite, then it is singular
e every positive semidefinite matrix has nonnegative diagonal elements

e if the n X n matrix A is positive semidefinite, then
BTAB

is positive semidefinite for any n x m matrix B

e every Gram matrix A = BT B is positive semidefinite
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Examples on positive definiteness

are the following matrices positive definite?

o A=

o A=

o A=

[ -1 2 3
2 5 =3
3 -3 2
I — uuT where u is an n-vector with ||ul| < 1

[ 1 B _ _
BT I4+BTB where B is an m X n matrix
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Cholesky factorization
every positive definite n x n matrix A can be factored as
A=R"R

where R € R™*" is upper triangular with positive diagonal elements
e complexity of computing R is (1/3)n? flops
e practical method for testing positive definiteness

e used in solving Az = b when A is positive definite
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Cholesky factorization algorithm

|: All A1,2:n :| — |: Rll 0 :| |:R11 R1,2:n :|
A2:n,1 A2:n,2:n R,{,Z:n Rg:n,2:n 0 R2:n,2:n
_ R%, Ri1 Ry 2
RllR’{Q;n R{Q;anﬂzn + R%jn72;nR2:n,2:n

1. compute first row of R:

1
Ry = Aq, Rio.p = R7A1,2:n
11

2. compute 2,2 block Ra.y, 2.5 from
A2:n,2:n - R{Q;anjzn - R;n,Q;nRZ:nQ:n

which is a Cholesky factorization of order n — 1
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Examples on Cholesky factorization

simple exercises: Al11.8
block matrix example: A11.13

a more complicated example: Al11.21

1 avg(a) avg(b) 1 ln 1Ta 170
A= |avg(a) rms(a)? (a"n)/n| == |a"1l a"a aTb
avg(h) (bTa)/n  rms(b)? 1T bTa b7

exploit structure: A is positive definite with negative off-diagonal entries
1. show that its Cholesky factor R has negative above diagonal entries

2. show that R™" has positive above diagonal entries

3. show that all entries of A~! is positive
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Mathematical background

e gradient of differentiable function g: R* — R

V() = (i(@,...,ji(@) eR"

e Hessian of g at z is a symmetric n x n matrix V2g(z) with entries

0%g

(V29(2))i; = M(Z)

e composition with affine mapping: if g(x) = h(Cx + d), then

Vg(z) = CTVh(Cx +d)  V?g(z) = CTV?*h(Cz + d)C
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Mathematical background

e affine approximation of g at z
9(x) = g(2) + g(2)" (x — 2)

e quadratic approximation of g at z

g(x) = g(2) + Vg(2)" (x — 2) + %(33 —2)'V2g(2)(x — 2)

e Jacobian of differentiable function f: R — R™

[ Of1 0f1 df1

ZI2y D20y L D20, 1z

i) |55 ® 3w | |
o : o : o : V fn(2)"
_871:1(2:) 87172(2) T oz (2)
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Basic optimization theory

e local optimum and global optimum

e optimality conditions for twice differentiable function g
o necessary: if x* is locally optimal, then

Vg(z*) =0 and VZg(z*) is positive semidefinite
o sufficient: x* is locally optimal only if
Vg(z*) =0 and VZg(z") is positive definite
o if g is a convex function, then

z* is optimal <= Vg(z*) =0
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Properties of matrix norms

Properties satisfied by all matrix norms

e nonnegative: ||A|2 > 0 for all A

e positive definiteness: | A|l2 =0 only if A=0
o homogeneity: [|8Al = |BI][ Al

e triangle inequality: ||[A+ B2 < ||All2 + || Bl|2

Additional properties satisfied by the 2-norm ||Al|; = max, (|| Az|/||z])
o |4z < Al ]z

|AB]l> < [|All»

e if A is nonsingular, then ||A|2||A71]2 > 1

if A is nonsingular, then 1/||A™! |2 = ming .o (||Az|/||z||)

[AT ]|z = || A
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Example on matrix norms

A € R"™*" has linearly independent columns and QR factorization A = QR
1. show that the norm of A satisfies

1
min{Ru, Rog, ..., Rnn}

||AH2 ZmaX{R117R227---7Rnn}a HATHQ Z

(we follow the convention that R;; > 0)
2. show that [[AAT||s = 1 (even when AAT # I)
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Example on matrix norms

1. if Ais a square matrix with || — A||2 < 1. then A is nonsingular
2. if A is a nonsingular matrix, then

AT 2 < JAT" =Tl +1, AT = I]l2 < A7 2]l = All2
3. if Ais a square matrix with ||I — Alj2 < 1, then

1 1 I—A
IQ(A)< +|| H2

A= ST Al

11— All2”
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Condition and stability

Problem condition a mathematical problem is

e well conditioned if small changes in problem parameters (or problem data)
lead to small changes in the solution;

e ill-conditioned if small changes in problem parameters (or problem data)
can cause large changes in the solution

Cancellation occurs when
e we subtract two numbers that are almost equal;

e one or both numbers are subject to error

Numerical stability
refers to the accuracy of an algorithm in the presence of rounding errors
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IEEE floating point numbers

Binary floating point numbers

xr = i(dldQ e dn)g - 2°¢

Machine precision ey = 2793 ~ 1.1102 - 10716

Rounding

e a floating point number system is a finite set of numbers

e all other numbers must be rounded

Rounding rules
e numbers are rounded to the nearest floating point number

e ties are resolved by rounding to the number with least significant bit 0
("round to nearest even")
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Example on IEEE floating point numbers

the figure shows the function

(42 -1
f(af)—m

evaluated in IEEE double precision arithmetic in the interval [10716,10715]

2l

Bt

oH
1 10
x1071®
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