
ECE205A Matrix Analysis (Fall 2020) December 11, 2020

Final Review

Instructor: Dr. M. R. Rajati TA: Xin Jiang

1 Linear transformation

1.1 Linear transformation

• Definition.

• Linear transformation and matrix–vector product.

• Change of basis.

• Composition of linear functions.

• The space of linear functions (HW5P7).

• Adjoint (HW6P8, 10). See also Problem 1.

1.2 Four fundamental subspaces

Consider a general matrix A ∈ Rm×n with rank(A) = r. When thought of as a linear map from Rn
to Rm, many properties of A can be developed in terms of the four fundamental subspaces.

N (A)⊥ = R(AT ) R(A)

⊕ {0} ⊕ {0}

N (A) R(A)⊥ = N (AT )

Rn Rm

dim = r

dim = m− r

dim = r

dim = n− r

A

AAT
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1.3 Injection, surjection, and bijection

Injection. The linear map L : V → W is called injective (or one-to-one, monic) if N (L) = {0}. In
particular, when L is characterized by the matrix A ∈ Rm×n, the following conditions are equivalent.
• A is injective, one-to-one, or monic.

• N (A) = {0}, or rank(A) = n; i.e., Ax = Ay implies x = y, or equivalently, Ax 6= Ay if x 6= y.

• A has linearly independent columns.

• A is left invertible; i.e., there exists a linear map A−L : W → V such that A−L ◦A = IV .

• The Gram matrix ATA is nonsingular.

• Linear equations Ax = b has at most one solution for every right-hand side b ∈ Rm.
A matrix with these properties must be tall or square (m ≥ n). Its pseudo-inverse, given by
A† = (ATA)−1AT , is also a left inverse of A, and the left inverse has the form

A−L = A† + Y (I −AA†),
where Y ∈ Rn×m is arbitrary. The solution for Ax = b (if exists) is x = A†b.

Surjection. The linear map L : V → W is called surjective (or onto, epic) if R(L) = W. In
particular, when L is characterized by the matrix A ∈ Rm×n, the following conditions are equivalent.
• A is surjective, onto, or epic.

• R(A) = Rm, or rank(A) = m.

• A has linearly independent rows.

• A is right invertible; i.e., there exists a linear map A−R : W → V such that A ◦A−R = IW .

• The Gram matrix AAT is nonsingular.

• Linear equations Ax = b has at least one solution for every right-hand side b ∈ Rn.
A matrix with these properties must be wide or square (m ≤ n). Its pseudo-inverse, given by
A† = AT (AAT )−1, is also a right inverse of A, and the right inverse has the form

A−R = A† + (I −A†A)Y,

where Y ∈ Rn×m is arbitrary. Thus, x = A−Rb is the general solution for Ax = b.

Bijection. The linear map L : V → V is bijective (or invertible) if and only if its is one-to-one and
onto. In particular, the square matrix A : Rn → Rn is invertible or nonsingular if and only if any
of the following conditions are valid.

• A is left invertible.

• The columns of A are linearly independent.

• A is right invertible.

• The rows of A are linearly independent.

• Linear equations Ax = b has a unique solution x = A−1b for every right-hand side b ∈ Rn.
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1.4 Linear systems

We study the consistency and structure of the solutions for the (vector) linear system

Ax = b, where A ∈ Rm×n, b ∈ Rm. (1)

If the linear system (1) is solvable, we call (1) is consistent ; otherwise, it is inconsistent.

Arbitrary right-hand side. We first review the consistency of (1) for any right-hand side.

• There exists at least one solution to (1) for all b ∈ Rm if and only if R(A) = Rm.

• There exists at most one solution to (1) for all b ∈ Rm if and only if N (A) = {0}.

• There exists a unique solution to (1) for all b ∈ Rm if and only if A is nonsingular.

Particular right-hand side. We examine the consistency of (1) for a particular right-hand side.

• There exists (at least) one solution to (1) if and only if b ∈ R(A), or equivalently, (HW6P3)

rank(
[
A b

]
) = rank(A).

Moreover when it occurs, x is a solution to (1) if and only if

x = x• + z,

where z ∈ N (A) is an element of the nullspace of A.

• The solution to (1) (if exists) is unique if and only if N (A) = {0}.

• There is a nontrivial solution for the homogeneous system Az = 0 if and only if N (A) 6= {0}.

1.5 Projection

• Projection is a linear transformation.

• P ∈ Rn×n is a projection iff P 2 = P .

• P ∈ Rn×n is a projection iff I − P is a projection.

• P is an orthogonal projection iff P 2 = P = P T .

• Orthogonal projections on fundamental subspaces.

PR(A) = AA† PN (A) = I −A†A PR(A)⊥ = I −AA† PN (A)⊥ = A†A
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2 Moore–Penrose pseudo-inverse

Definition. Algebraic; Penrose conditions (HW7P1, 3, 4, 5, 6); and limit characteristic (HW7P2).

Inverse, pseudo-inverse, left/right inverse.

• A ∈ Rn×nn is square and nonsingular, A† = A−1 = A−L = A−R.

• A ∈ Rm×nn is a tall matrix with linearly independent columns.

pseudo-inverse unique A† = (ATA)−1AT

left-inverse not unique A−L = A† + Y (I −AA†)
sol. for Ax = b if exists x = A†b

(In the table, Y is an arbitrary n×m matrix.)

• A ∈ Rm×nm is a wide matrix with linearly independent rows.

pseudo-inverse unique A† = AT (AAT )−1

right-inverse not unique A−R = A† + (I −A†A)Y
sol. for Ax = b always exists x = A−Rb

(In the table, Y is an arbitrary n×m matrix.)

Pseudo-inverse and matrix decomposition.

• Full-rank decomposition. Suppose A ∈ Rm×nr has full-rank decomposition A = BC, where
B ∈ Rm×rr and C ∈ Rr×nr . Then A† = (BC)† = C†B† = CT (CCT )−1(BTB)−1BT .

• Spectral decomposition. Suppose A ∈ Sn has eigenvaue decomposition A = QΛQT . Then
A† = QΛ†QT , where Λ† is a diagonal matrix with diagonal elements

λ†i =

{
λ−1i if λi 6= 0

0 elsewhere.

• Singular value decomposition. Omitted. Suppose A ∈ Rm×nr has singular value decomposition
A = UΣV T , where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ ∈ Rm×n has diagonal
elements σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and zero elsewhere. Then A† = V Σ†U , where Σ† ∈ Rn×m
has diagonal elements σ−11 , . . . , σ−1r , and zero elsewhere.

• Orthogonal equivalence. Suppose U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices. Let
A ∈ Rm×n, and thus

(UAV )† = V TA†UT .

Pseudo-inverse and fundamental subspaces.

• R(A†) = R(AT ) = R(A†A) = R(ATA).

• N (A†) = N (AT ) = N (AA†) = N (AAT ) = N ((AAT )†).

• Let A ∈ Rn×p and B ∈ Rn×m. Then R(B) ⊆ R(A) if and only if AA†B = B.

• Let A ∈ Rp×n and B ∈ Rm×n. Then N (A) ⊆ N (B) if and only if BA†A = B.
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3 Linear least squares problem

3.1 Least squares problem

Least squares problem minimize ‖Ax− b‖22
Normal equation ATAx̂ = AT b
Unique solution x̂ = A†b = (ATA)−1AT b

• The uniqueness of the least squares solution requires the left-invertibity of A.

• Three approaches to solve the least squares problem.

• Regularization: motivation and transformation to a least squares problem.

• Linear regression; see Problem 5.

3.2 Least squares model fitting

We choose the model f̂(x) from a family of models

f̂(x) = θ1f1(x) + · · ·+ θpfp(x) = θTF (x).

• The basis functions fi are chosen by us, and F (x) = (f1(x), . . . , fp(x)) is a p-vector of basis
functions. The basis functions usually include a constant function, typically, fi(x) = 1.

• The coefficients θ1, . . . , θp are the model parameters.

• It is called a linear-in-parameters model since the model f̂(x) is linear in the parameters θi.

To fit the linear-in-parameters model to the data set (x1, y1), . . . , (xN , yN ), we minimized the
sum of `2-norms of residuals ri = f̂(xi)− yi, i.e.,

minimize
1

N

N∑
i=1

‖f̂(xi)− yi‖22.

It is a least squares problem
minimize ‖Aθ − y‖22

where

A =


f1(x1) f2(x1) · · · fp(x1)
f1(x2) f2(x2) · · · fp(x2)
...

...
...

f1(xN ) f2(xN ) · · · fp(xN )

 , θ =


θ1
θ2
...
θp

 , y =


y1
y2
...
yN

 .

3.3 Least norm problem

minimize ‖x‖22
subject to Cx = d

• The coefficient matrix C ∈ Rp×n is a wide matrix (p < n) in most applications. So the
equation Cx = d is often underdetermined.

• We assume C has linearly independent rows, and thus the optimal solution is given by

x̂ = C†d = CT (CCT )−1d.
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4 Eigenvalues and eigenvectors

4.1 Basic definition and properties

Characteristic polynomial and minimal polynomial. λ1, . . . , λτ are distinct eigenvalues ofA.

Characteristic polynomial π(λ) = det(A− λI) =
∏τ
i=1(λ− λi)αi

Minimal polynomial φ(λ) =
∏τ
i=1(λ− λi)βi

Multiplicity of eigenvalues.

Eigenvalue (algebraic) π(λ) = det(A− λI) = 0 α repetition of λ
Eigenvector (geometric) nonzero solutions to Ax = λx γ dimN (A− λI)

Diagonalization. Equivalent conditions for a diagonalizable matrix A.

• There exists an n× n nonsingular matrix X such that X−1AX = D is diagonal.

• A has a complete linearly independent set of eigenvectors.

• For every eigenvalue λi, its algebraic and geometric multiplicities are equal, i.e., αi = γi.

Remark.

• There is no connection between invertibility and diagonalization.

• The matrix A is diagonalizable if and only if the nullity of A is equal to the (algebraic)
multiplicity of λ = 0. (HW8P5)

Eigenvalues and eigenvectors of Hermitian matrices.

• A Hermitian matrix has only real eigenvalues.

• Eigenvectors of a Hermitian matrix are orthogonal to each other. Thus all Hermitian matrices
are diagonalizable, and especially, they are unitarily similar to a diagonal matrix. This is
called the spectral decomposition A = QΛQH .

• The diagonal elements of a Hermitian matrix must be real.

4.2 Matrix similarity and equivalence

• A,B ∈ Cn×n are similar if there is a nonsingular matrix M ∈ Cn×n such that B = M−1AM .

• A,B ∈ Cm×n are equivalent if there is nonsingular matrices P and Q such that B = PAQ.

• A,B ∈ Cn×n are congruent if there is a nonsingular matrixM ∈ Cn×n such that B = MHAM .

Remark. The table below shows some properties of similarity transformation. In particular, similar
matrices share the same eigenvalues. But unfortunately, two matrices can have the same repeated
eigenvalues and fail to be similar, because they may have different number of linearly independent
eigenvectors.
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Not changed by M Changed by M
Eigenvalues Eigenvectors
Rank Fundamental subspaces
Trace and determinant Singular values
Number of linearly
independent eigenvectors
characteristic polynomial π(λ)
minimal polynomial φ(λ)

4.3 Jordan canonical form

Definition. For any square matrix A ∈ Cn×n, there is a nonsingular matrix X ∈ Cn×n such that

X−1AX = J = diag(J1, . . . , Jq),

where each of the Jordan block matrices J1, . . . , Jq is of the form

Ji =



λj 1 0 · · · · · · 0

0 λj 1 0
...

...
. . . λj

. . .
. . .

...
. . . 1 0

...
. . . λj 1

0 · · · · · · 0 λj


∈ Cni×ni (2)

and
∑q

i=1 ni = n. Especially, for real matrices A ∈ Rn×n, each Jordan block matrix has the form (2)
in the case of real eigenvalues λj ∈ R, and

Ji =



Mj I2 0 · · · · · · 0

0 Mj I2 0
...

...
. . . Mj

. . .
. . .

...
. . . 1 0

...
. . . Mj I2

0 · · · · · · 0 Mj


∈ R2ni×2ni , where Mj =

[
aj bj
−bj aj

]
, I2 =

[
1 0
0 1

]

in the case of complex conjugate eigenvalues aj ± ı̂bj .

Determination of the JCF. Detailed computation omitted (HW8P4). See also Problem 9.

• The Jordan canonical form J of A can be determined eigenvalue by eigenvalue.

• The algebraic multiplicity α determines the total size of Jordan blocks associated with λ.

• The geometric multiplicity γ indicates the number of Jordan blocks associated with λ.

• The degree β of the associated item in the minimal polynomial is the same as the largest size
of Jordan blocks associated with λ.

The knowledge of α, β, and γ cannot determine the JCF (HW9P6, 7, 8). See also Problem 8.
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Algorithm 1 Determination of the Jordan canonical form.
Require: A matrix A ∈ Cn×n with distinct eigenvalues λ1, . . . , λτ , each of algebraic multiplicity

αi and geometric multiplicity γi.
Ensure: The Jordan canonical form J ∈ Cn×n, and the transformation matrix X ∈ Cn×n with

linearly independent columns.
1: for i = 1, . . . , τ do
2: Solve the linear equation

(A− λiI)x(1) = 0.

This step finds all the linearly independent eigenvectors associated with λi, and clearly there
are γi = dimN (A− λI) of them, denoted as x(1)i,1 , . . . , x

(1)
i,γi

.
3: for j = 1, . . . , γi do
4: for ` = 1, . . . , βi do the following. Solve the linear equation

(A− λiI)x = x
(`)
i,j .

5: If the solution x ∈ R(A− λiI), denote it as x(`+1)
i,j and proceed to next `-iteration.

6: Otherwise, record the current ` as ηj , and then break the current `-iteration.
7: end for
8: end for
9: Arrange all the solutions in a matrix

Xi =
[
x
(1)
i,1 · · · x

(η1)
i,1 x

(1)
i,2 · · · x

(η2)
i,2 · · · x

(1)
i,γi

· · · x
(ηγi )
i,γi

]
.

10: Determine the sizes of the Jordan blocks associated with current λi:

Ji,1 ∈ Cη1×η1 , Ji,2 ∈ Cη2×η2 , · · · , Ji,γi ∈ Cηγi×ηγi ,

and define Ji = diag(Ji,1, . . . , Ji,γi).
11: end for
12: Define the Jordan canonical form

J = diag(J1, . . . , Jτ ),

and the corresponding nonsingular matrix

X =
[
X1 · · · Xτ

]
.
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5 Positive definite matrices

Positive definite matrices. A symmetric matrix A ∈ Sn is positive definite if

xTAx > 0 for all x 6= 0.

The following properties are equivalent for a symmetric n× n matrix A.

1. The quadratic form xTAx is positive except at x = 0.

2. All the eigenvalues are positive.

3. All the leading principal minors have positive determinant; and they are positive definite.

4. The matrix A can be factored as A = MTM where M ∈ Rn×n is nonsingular. Note that the
factor M may not be unique.

5. It has a unique Cholesky factorization A = LLT .

Positive semidefinite matrices. A symmetric matrix A ∈ Sn is positive semidefinite if

xTAx ≥ 0 for all x.

The following properties are equivalent for a symmetric n× n matrix A.

1. The quadratic form xTAx is always nonnegative.

2. All the eigenvalues are nonnegative.

3. All the principal minors have nonnegative determinants; and they are positive semidefinite.

4. The matrix A can be factored as A = MTM with M ∈ Rk×n and k ≥ rank(A) = rank(M).
Note that the factor M may not be unique.

5. There is a permutation matrix P ∈ Rn×n such that P TAP has a Cholesky factorization
PAP T = LLT , and L might be singular.
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6 Functions of matrices

A Jordan-based approach. Let A ∈ Cn×n and J = diag(J1, . . . , Jq) = X−1AX be its JCF
where each Jordan block Ji has the form (2). The matrix function f(A) is defined by

f(A) = X diag(F1, . . . , Fq)X
−1,

where

Fi =



f(λi) f (1)(λi) · · · · · ·
f (ni−1)(λi)

(ni − 1)!

0 f(λi)
. . . · · ·

...
...

...
. . .

. . .
...

...
...

...
. . . f (1)(λi)

0 · · · · · · · · · f(λi)


, i = 1, 2, . . . , q,

assuming that all the required derivative evaluations exist. (HW9P5)

An eigenvector approach. If the matrix A is diagonalizable: A = X diag(λ1, . . . , λn)X−1, then

f(A) = X diag
(
f(λ1), . . . , f(λn)

)
X−1.

The Taylor series representation. Assume that f is analytic in a neighborhood of z0 ∈ C, i.e.

f(z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)k, for |z − z0| < r. (3)

Let A ∈ Cn×n and suppose |λ− z0| < r for all λ ∈ Λ(A). Then

f(A) =

∞∑
k=0

f (k)(z0)

k!
(A− z0I)k.

(This definition is rarely used in computation, but Problem 12 would be a good example.)

Interpolation method. We can regroup the Taylor series (3) of f(z) so that

f(z) = π(z)

∞∑
k=0

akz
k + r(z),

where π(λ) =
∏τ
i=1(λ − λi)αi is the characteristic polynomial of A, and r(z) is a polynomial of

degree at most n− 1. Thus we can define

r(z) = c0 + c1z + · · ·+ cn−1z
n−1,

where c0, . . . , cn−1 are n constants to be determined. In fact, they are the unique solution of the n
linear equations

r(k)(λi) = f (k)(λi), for k = 0, 1, . . . , αi − 1, and i = 1, . . . , τ.

The superscript (k) denotes the kth derivative. This is true because π(k)(λi) = 0 for k = 0, 1, . . . , αi−
1. By solving the coefficients of the polynomial r, we determine the function f(A) = r(A) by the
Cayley–Hamilton theorem. (HW9P3, 4, 9)

10



7 Linear differential equations

homogeneous LDE ẋ(t) = Ax(t) x(t) = e(t−t0)Ax0
non-homogeneous LDE ẋ(t) = Ax(t) +Bu(t) x(t) = e(t−t0)Ax0 +

∫ t
t0
e(t−s)ABu(s) ds

Modal decomposition. The solution x(t) is a weighted sum of its modal directions.

Stability of LTI systems. Definitions of Lyapunov and asymptotical stability, and their repre-
sentations in terms of Λ(A).

• The system is asymptotically stable if <(λi) < 0 for all i = 1, . . . , n.

• The system is Lyapunov stable if every eigenvalue λi satisfy the following conditions.

◦ If λi is a simple eigenvalue, then <(λi) ≤ 0.

◦ If λi is a repeated eigenvalue, then <(λi) < 0.

• The system is unstable if there is at least one eigenvalue λi with <(λi) > 0.

Lyapunov’s indirect method. Use linearization to determine the stability of the original system.

Linearization asymptotically stable unstable Lyapunov stable
Original nonlinear system asymptotically stable unstable unknown

Lyapunov’s direct method. Use Lyapunov equation to determine the stability of an LTI system.

Higher-order linear differential equations. Use change of variables to transform a higher-
order LDE

y(n)(t) + an−1y
(n−1)(t) + · · · a1ẏ(t) + a0y(t) = u(t)

into a first-order linear system

ẋ(t) =



0 1 0 · · · 0

0 0 1 · · ·
...

...
. . .

. . . 0
0 · · · · · · 0 1
−a0 −a1 · · · · · · −an−1

x(t) +


0
...
0
1

u(t).

8 Kronecker product

Definition and properties.
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9 Additional practice problems

Remark. These problems are additional exercises collected by the TA, and they do not indicate
the format, structure, or difficulty of the final exam.

We denote by Sn the set of n×n real symmetric matrices. In addition, the set of n×n symmetric
positive definite (and positive semidefinite) matrices is denoted by Sn++ (and Sn+).

Problem 1. Let V, W1, and W2 be inner product spaces, and let L1 : V → W1, L2 : V → W2 be
two linear functions. Define J1 = L∗1 ◦L1 and J2 = L∗2 ◦L2. Show that the sum J = J1 + J2 can be
written as a self-adjoint combination J = L∗ ◦ L for some linear function L.

Problem 2. Let P ∈ Rn×n be an orthogonal projection matrix.

(a) Show that ‖x‖22 = ‖Px‖22 + ‖(I − P )x‖22 for all x ∈ Rn.

(b) Show that the matrix 2P − I is orthogonal, and the inequalities

−‖x‖2‖y‖2 ≤ xT (2P − I)y ≤ ‖x‖2‖y‖2
holds for all n-vectors x and y.

(c) Show that P is positive semidefinite.

(d) Is P always positive definite? If no, list all the positive definite, orthogonal projection matrices.

(e) Show that Rn = R(P ) ⊕ N (P ). Explain whether this direct sum still holds if P is only a
projection matrix, but not orthogonal.

Problem 3. Suppose A is an n× (n− 1) matrix with linearly independent columns, and b is an
n-vector with AT b = 0 and ‖b‖2 = 1.

(a) Show that the matrix
[
A b

]
is nonsingular with inverse

[
A†

bT

]
.

(b) Let C be any left inverse of A. Show that[
C(I − bbT )

bT

] [
A b

]
=

[
I 0
0 1

]
.

(c) Use the results of parts (a) and (b) to show that C(I − bbT ) = A†.

Problem 4. Suppose A,B ∈ Rm×n have linearly independent columns and

AAT = BBT .

In this problem we show that B = AQ for some orthogonal Q.

(a) Show that the matrix U = A†B is orthogonal.

(b) Show that the matrix V = B†A is orthogonal.

(c) Show that U is the inverse of V .

(d) Find an orthogonal matrix Q such that B = AQ.

(This result can be extended to two arbitrary tall matrices A and B, not necessarily left-invertible.)
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Problem 5. Suppose the set of points {(ti, yi)}mi=1 are approximated by a function of the form

f(t) =
eαt+β

1 + eαt+β
.

Formulate the following problem as a least squares problem: Find values of the parameters α, β
such that

eαti+β

1 + eαti+β
≈ yi, i = 1, . . . ,m.

(You can assume that 0 < yi < 1 for i = 1, . . . ,m.)

Problem 6. Find the optimal solution of the following two optimization problems.

(a)
minimize ‖x‖22 + ‖y‖22
subject to ATx− 2AT y = b,

where x, y ∈ Rm are the optimization variables, and A ∈ Rm×n is left-invertible.

(b)
minimize xTAx
subject to cTx = 1,

where x ∈ Rn is the optimization variable, A ∈ Sn++, and c ∈ Rn is a nonzero vector.

Problem 7. In this problem, suppose A is an n× n symmetric matrix.

(a) Show that the largest and smallest eigenvalues of A are

λmax = max
x6=0

xTAx

xTx
= max
‖x‖2=1

xTAx, λmin = min
x 6=0

xTAx

xTx
= min
‖x‖2=1

xTAx.

(b) Write the matrix norms ‖A‖2 and ‖A‖F as a function of eigenvalues of A, i.e., find functions f
and g such that ‖A‖2 = f(Λ(A)) and ‖A‖F = g(Λ(A)).

Problem 8. Suppose a matrix A ∈ C4×4 has a characteristic polynomial λ4 = 0. Determine all
the possible Jordan canonical forms of A.

Problem 9. Compute the Jordan canonical form of the matrix

A =

 5 −2 −1
1 2 −1
−1 2 5


and the associated nonsingular matrix X such that A = XJX−1.

Problem 10. Suppose A and B are symmetric positive definite. Show that the eigenvalues of AB
are still positive, even when AB is not symmetric.
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Problem 11. Let A ∈ Rm×n and B ∈ Sn. Suppose the matrix
[

0 A
AT B

]
is positive semidefinite.

Show that A = 0 and B is positive semidefinite.

Problem 12. Let A =

[
I X
0 −I

]
, where X ∈ Rm×n is arbitrary. Show that etA =

[
eI (sinh 1)X
0 (1/e)I

]
.

Problem 13. (Exponential of skew-symmetric matrices.) In general, there is no closed-form for-
mula for the exponential eA of a matrix A, but for skew-symmetric matrices of dimension 2 and 3,
there are explicit formulas.

(a) Denote the 2× 2 skew-symmetric matrix by A = θJ with J =

[
0 −1
1 0

]
. Show that

eA = (cos θ)I2 + (sin θ)J =

[
cos θ − sin θ
sin θ cos θ

]
.

(b) For an n × n skew-symmetric matrix B, i.e., BT = −B, show that Q = eB is a rotation
matrix, i.e., an orthogonal matrix with detQ = 1.

(Part (a) is a special case of the following result. Let C =

[
α β
−β α

]
with α, β ∈ R. Then

etA =

[
eαt cosβt eαt sinβt
−eαt sinβt eαt cosβt

]
.

But the matrix C is no longer skew-symmetric when α 6= 0.)

Problem 14. Let A,B ∈ Rn×n be two orthogonal matrices. Is A⊗B also an orthogonal matrix?
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