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Abstract

We investigate the local linear convergence properties of the Alternating Direction Method of Multi-
pliers (ADMM) when applied to Semidefinite Programming (SDP). A longstanding belief suggests that
ADMM is only capable of solving SDPs to moderate accuracy, primarily due to its sublinear worst-case
complexity and empirical observations of slow convergence. We challenge this notion by introducing
a new sufficient condition for local linear convergence: as long as the converged primal–dual optimal
solutions satisfy strict complementarity, ADMM attains local linear convergence, independent of nonde-
generacy conditions. Our proof is based on a direct local linearization of the ADMM operator and a
refined error bound for the projection onto the positive semidefinite cone, improving previous bounds
and revealing the anisotropic nature of projection residuals. Extensive numerical experiments confirm
the significance of our theoretical results, demonstrating that ADMM achieves local linear convergence
and computes high-accuracy solutions in a variety of SDP instances, including those where nondegen-
eracy fails. Furthermore, we identify cases where ADMM struggles, linking these difficulties with near
violations of strict complementarity—a phenomenon that parallels recent findings in linear programming.
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1 Introduction
Consider the semidefinite programs (SDPs) in the standard form:

Primal: minimize ⟨C,X⟩ Dual: maximize bTy
subject to AX = b subject to A∗y + S = C

X ∈ Sn+ S ∈ Sn+,
(1)

with primal variable X ∈ Sn and dual variables S ∈ Sn, y ∈ Rm, where Sn is the set of real symmetric n×n
matrices and Sn+ is the set of positive semidefinite (PSD) matrices in Sn. The linear operator A : Sn → Rm

is defined as
AX := (⟨A1, X⟩ , · · · , ⟨Am, X⟩)

and A∗y =
∑m

i=1 yiAi is its adjoint operator. The coefficients C,A1, . . . , Am are symmetric n× n matrices.
It is assumed that {Ai}mi=1 are linearly independent so that AA∗ is an invertible operator.

With the growing demand for solving large-scale SDPs, particularly those arising from moment and sums-
of-squares (SOS) relaxations in polynomial optimization [19, 21, 28, 30–32, 41, 43, 57, 62], first-order methods
(FOMs) have gained increasing attention due to their low per-iteration cost and ability to exploit problem
structure. Among these, the Alternating Direction Method of Multipliers (ADMM) has emerged as a widely
adopted approach, with numerous implementations, applications, and variations [11,31,46,58,64,69].

ADMM for SDP. Starting from (X(0), y(0), S(0)), the classical three-step ADMM iteration for the SDP (1)
reads as [58]:

y(k+1) = (AA∗)−1
(
σ−1b−A

(
σ−1X(k) + S(k) − C

))
(2a)

S(k+1) = ΠSn+

(
C −A∗y(k+1) − σ−1X(k)

)
(2b)

X(k+1) = X(k) + σ
(
S(k+1) +A∗y(k+1) − C

)
(2c)

where ΠSn+(·) denotes the orthogonal projection onto the PSD cone Sn+ and σ > 0 is the penalty parameter.
Under mild conditions, (X(k), y(k), S(k)) is convergent to (X⋆, y⋆, S⋆), one of the optimal solution pairs
satisfying the Karush–Kuhn–Tucker (KKT) conditions [58, Theorem 2]:

AX⋆ = b, A∗y⋆ + S⋆ = C, ⟨X⋆, S⋆⟩ = 0, X⋆ ∈ Sn+, S⋆ ∈ Sn+. (3)

The ADMM iteration (2) is often analyzed via the following equivalent fixed-point iterations [34]

Z(k+1) = A∗(AA∗)−1A(−2ΠSn+(Z
(k)) + Z(k)) + ΠSn+(Z

(k))

+A∗(AA∗)−1b+ σA∗(AA∗)−1AC − σC,
(4)

where we make the change of variables Z := X − σS (and Z⋆ := X⋆ − σS⋆). From Z(k), we can extract the
primal variable and the (scaled) dual variable as

X(k) = ΠSn+(Z
(k)), σS(k) = ΠSn+(−Z

(k)). (5)

In this paper, we investigate the local convergence properties of ADMM for solving SDPs. To this end,
we begin by recalling two important regularity conditions in SDP.

Nondegeneracy and strict complementarity. First introduced in [1], nondegeneracy and strict com-
plementarity have been two fundamental regularity conditions in SDP [2,68]. Since the primal–dual optimal
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solutions are simultaneously diagonalizable [59, pp. 308], we assume they admit the following decomposition:

X⋆ = Q⋆

[
ΛX 0
0 0

]
QT

⋆ , ΛX := diag (λ1, . . . , λr) (6a)

σS⋆ = Q⋆

[
0 0
0 ΛS

]
QT

⋆ , ΛS := −diag (λn−s+1, . . . , λn) , (6b)

where diag (·) assembles a vector into a diagonal matrix, Q⋆ ∈ Rn×n is an orthogonal matrix, and the
eigenvalues satisfy

λ1 ≥ · · · ≥ λr > 0 > λn−s+1 ≥ · · · ≥ λn

with r + s ≤ n. Then, we define four important subspaces [1]:

TX⋆
:=

{
Q⋆

[
HX HT

O

HO 0

]
QT

⋆

∣∣∣∣ HX ∈ Sr, HO ∈ R(n−r)×r

}
(7a)

NX⋆
:= T ⊥

X⋆
=

{
Q⋆

[
0 0
0 HS

]
QT

⋆

∣∣∣∣ HS ∈ Sn−r

}
(7b)

TS⋆
:=

{
Q⋆

[
0 HT

O

HO HS

]
QT

⋆

∣∣∣∣ HS ∈ Ss, HO ∈ Rs×(n−s)

}
(7c)

NS⋆
:= T ⊥

S⋆
=

{
Q⋆

[
HX 0
0 0

]
QT

⋆

∣∣∣∣ HX ∈ Sn−s

}
, (7d)

where L⊥ represents the orthogonal complement of the linear subspace L. Further, we denote R(A∗) :=
{
∑m

i=1Aiyi | y ∈ Rm} as the range space of A∗, and N (A) as R(A∗)⊥ = {X ∈ Sn | AX = 0}. The
nondegeneracy (ND) and strict complementarity (SC) conditions—two generic properties for SDPs—are
defined as [1]:

Primal Nondegeneracy: TX⋆
+N (A) = Sn ⇐⇒ NX⋆

∩R(A∗) = {0} (8)
Dual Nondegeneracy: TS⋆

+R(A∗) = Sn ⇐⇒ NS⋆
∩N (A) = {0} (9)

Strict Complementarity: rank(X⋆) + rank(S⋆) = n⇐⇒ r + s = n. (10)

When strict complementarity holds, primal (resp., dual) nondegeneracy is equivalent to the uniqueness of
dual (resp., primal) optimal solution [1].

1.1 ADMM for SDP: Sublinear Rate and Moderate Accuracy?
A common perception for ADMM among practitioners is that it generally cannot solve the SDP (1) to
high accuracy (e.g., max KKT residual below 10−10). Indeed, this perception arises from both theoretical
challenges and empirical observations.

Theoretically, a well-accepted convergence rate for ADMM applied to solving SDPs is O (1/ϵ), which
matches the general convex optimization case [51]. Establishing linear convergence O(log(1/ϵ)) is considered
hard, since known sufficient conditions, such as strong convexity [44], local polyhedrality [27,35] and certain
growth conditions [13, 15, 27, 39, 65, 66], either fail or remain unclear for SDP. As pioneering works, [9, 22]
established local linear convergence of ADMM for solving SDPs when primal nondegeneracy (8) and dual
nondegeneracy (9) both hold (regardless of strict complementarity (10)), by showing the metric subregularity
(or calmness) of the KKT operator. However, two challenges remain: (a) two-side nondegeneracy conditions
are hard to check numerically, and (b) important subclasses of SDP, such as those arising from the moment-
SOS relaxations with finite convergence [32], are known to be degenerate. It remains an open question in
optimization theory whether alternative, and perhaps simple-to-verify, sufficient conditions can ensure the
linear convergence of ADMM for solving SDPs.
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Empirically, the slow convergence of ADMM and its variants when solving SDPs is widely reported [20,
31, 63, 69]. For a typical SDP, the interior point method [2] (IPM) implemented in MOSEK [4] can solve
the problem to machine precision (if memory permits), while ADMM often struggles to achieve moderate
accuracy (e.g., max KKT residual 10−4). Consequently, ADMM and its variants are primarily used to
warmstart downstream solvers [63, 64] or as efficient methods to obtain coarse solutions [31]. In contrast,
recently in the linear programming (LP) literature, first-order methods are observed to exhibit significantly
improved local linear convergence rates after initially traversing a prolonged phase of slow convergence [40].
To the best of our knowledge, no comparable numerical evidence has been documented in the SDP literature.

Thus, the central question driving this paper is:

Can ADMM exhibit empirically observable linear convergence when solving SDPs? If so, can we
establish numerically verifiable sufficient conditions to guarantee this behavior?

1.2 Contributions
We affirm this question both empirically and theoretically. We establish local linear convergence of ADMM
for SDP under a mild strict complementarity (SC) assumption. Moreover, comprehensive numerical results
are reported to demonstrate such a prevalent linear rate of convergence.

Theoretical contribution. We establish a new sufficient condition that guarantees the local linear con-
vergence of ADMM for solving SDPs.

Theorem 1 (Informal: Local Linear Convergence under Strict Complementarity). If ADMM converges
to an optimal solution (X⋆, y⋆, S⋆) of the SDP (1) that satisfies strict complementarity (10), then ADMM
attains local linear convergence after finite iterations.

Our sufficient condition holds independently of nondegeneracy (ND). Verifying strict complementar-
ity (10) requires only checking the numerical rank of X⋆ and S⋆, a significantly more tractable procedure
compared with verifying nondegeneracy, which involves examining the intersection of two subspaces.

At a high level, our proof framework is built upon a detailed local linearization analysis of the ADMM
operator, incorporating several key contributions.

• A refined error bound for the PSD cone projector. We improve the classic linearization result
of the PSD cone projector in [54, Theorem 4.6] by tightening the bound on the linearization residual
from O(∥H∥2) to O(∥HO∥ · ∥H∥), where H represents a small perturbation and HO denotes its off-
block-diagonal part. This refinement is a cornerstone of our proof, revealing the anisotropic nature of
the residual and offering potential applications beyond our setting.

• Characterization of the local behavior of ADMM. Our analysis relies on a local linearization of
the fixed-point iteration (9). In particular, when near optimum, the iterate error Z(k+1) − Z⋆ can be
written as a linear transformation of Z(k)−Z⋆ plus a quadratic residual term. When both ND and SC
hold, we prove that the linear transformation is contractive and that the linearization residual becomes
negligible, directly leading to local linear convergence.

• Handling cases without nondegeneracy. When ND fails but SC holds, we first show that the
several “partial” sequences, e.g., the off-block-diagonal part of Z(k) − Z⋆, vanish at a local linear rate.
To establish the convergence of the full sequence, we further extend the regularized backward error
bound for spectrahedra [53, Lemma 2.3] to the (scaled) KKT system of SDP. This helps build a local
“conditional sharpness” property, analogous to sharpness in LP [3] but with an additional term related
to the minimal faces of the PSD cone. This “conditional sharpness”, together with the convergence of
“partial” sequences, finally yields the R-linear rate of convergence for the ADMM iterates.

Notably, our proof framework differs from [22] in that it does not rely on the metric subregularity of the
KKT operator, which is intractable to verify numerically.
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Empirical contribution. In parallel with the theoretical findings, we present extensive numerical evidence
demonstrating the prevalent local linear convergence of ADMM when solving SDPs. To systematically
analyze this phenomenon, we categorize SDP problems into four families based on whether the nondegeneracy
(ND) and strict complementarity (SC) conditions hold or fail. A representative subset of our numerical results
is shown in Figure 1, where ADMM consistently enters a linear convergence regime across all four cases. The
full set of numerical experiments is detailed in Section 8, covering a broad range of SDP instances. Our test
suite includes standard benchmark datasets [42, 48] as well as newly generated SDP problems in real-world
applications [23, 62]. These instances span classical MAXCUT-style SDPs and more challenging problems
from the moment-SOS relaxations with finite convergence [32, 56]. All the SDP problems are available at
https://github.com/ComputationalRobotics/admmsdp-linearconv.

(a) ND holds and SC holds (b) ND holds and SC fails

(c) ND fails and SC holds (d) ND fails and SC fails

Figure 1: Four representative SDP instances. (a) A toy structure-from-motion problem from [23]; (b) A toy
example from [59, pp. 44]; (c) A Quasar problem from [61] with random initialization; (d) Second-order
relaxation for a random BQP problem [63] with all-zeros initialization. Here, rmax denotes the maximum
KKT residual. In all the cases, ADMM with fixed σ parameter eventually exhibits local linear convergence.

In addition, we document “failure” cases of ADMM in which the maximum KKT residual remains above
10−10 even after reaching the iteration limit (106 iterations) or the time limit (100 hours). These cases
exhibit a common feature: the minimum positive eigenvalue of the converged X⋆ or S⋆ is near zero. This
behavior closely resembles difficult cases in LP [40] and can be partly explained via our proof framework.
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Open questions: rank identification and beyond. In first-order methods for LP [40], local linear
convergence is achieved alongside with basis identification. An analogous result in ADMM for SDP (with
SC) would be rank identification; i.e., after a finite number of iterations, ADMM identifies the solution rank,
and all subsequent iterates maintain at the same rank. Though this result could be readily drawn from the
partial smoothness theory [18, 33, 60], we provide a more direct proof that only leverages the algorithmic
properties of ADMM. However, unlike the LP case, it remains unclear that whether rank identification
and linear convergence occur simultaneously in ADMM for SDP. In this work, we provide a partial answer
through a numerical example and leave a full investigation for future work.

Relating our discussion back to Figure 1, this work establishes (R-)linear convergence guarantees of
ADMM for SDP, which covers cases (a)–(c) in Figure 1. (In comparison, [22] explains cases (a) and (b).)
However, whether ADMM provably attains local linear convergence in case (d), where both ND and SC fail,
remains an open question, a gap between theory and practice that warrants further investigation.

1.3 Notations
We use Rn to denote the set of n-dimensional real vectors and Rn

+ (resp., Rn
++) the set of nonnegative (resp.,

positive) vectors in Rn. Denote Rm×n as the set of m× n matrices. Denote Sn as the set of real symmetric
n × n matrices and Sn+/Sn++ (resp. Sn−/Sn−−) as the set of positive semidefinite/positive definite matrices
(resp., negative semidefinite/negative definite matrices) in Sn. Denote N the set of nonnegative integers and
for any integer n ∈ N, define [n] := 1, 2, . . . , n. Denote Id as the identity operator, denote In as the n × n
identity matrix and En (resp., Em×n) as the n × n (resp. m × n) all-ones matrix. For A ∈ Sn, λmin (A)
(resp., λmax (A)) represents its minimal eigenvalue (resp., maximal eigenvalue). For x ∈ Rn, we denote ∥x∥2
as its Euclidean norm. For X ∈ Rm×n, ∥X∥2 represents its spectral norm, ∥X∥F its Frobenius norm, and
∥X∥ an arbitrary norm. For a linear operator M : Sn → Sn, we use ∥M∥op to denote its operator norm:
∥M∥op := sup{∥MX∥F | ∥X∥F = 1}.

Denote A ◦ B as the Hadamard product between two matrices A and B of the same size; i.e., (A ◦
B)ij = AijBij . Denote A ⊗ B as the Kronecker product between A ∈ Rm×n and B ∈ Rp×q, and denote
A⊕B = A⊗ Im+ In⊗B as the Kronecker sum between A ∈ Rn×n and B ∈ Rm×m. Denote vec (X) has the
column-major vectorization of an arbitrary matrix X, and denote svec (A) : Sn → Rt(n) as the symmetric
vectorization of A, where t(n) := n(n+1)

2 . Denote smat as the inverse operator of svec. For an arbitrary
matrix A, Aa:b,c:d represents the submatrix of A indexed from row a to row b and from column c to column
d.

The distance from a point X ∈ Sn to a set X ⊆ Sn is defined as

dist(X,X ) := inf
X̃∈X
∥X − X̃∥F.

We will use the same notation to denote the distance to a Cartesian product of sets:

dist((X,S),X × S) := inf
(X̃,S̃)∈X×S

√
∥X − X̃∥2F + ∥S − S̃∥2F.

We denote the orthogonal projection onto a set X as ΠX ; in particular, ΠSn+(·) means the orthogonal
projection onto the PSD cone.

1.4 Outline
After a brief review of related work in Section 2, we introduce our refined error bound in Section 3, a
fundamental result that underpins our proof framework and holds independent interest. We then examine
the local linearization of ADMM in Section 4 and establish its local linear convergence both with and without
nondegeneracy in Section 5 and Section 6, respectively. Due to its mathematical complexity, the full proof of
our refined error bound is deferred to Section 7. In Section 8, we conduct extensive numerical experiments
to support our theoretical findings. Section 9 briefly discusses the rank identification phenomenon as well as
its relationship with local linear convergence. Finally, Section 10 includes concluding remarks.
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2 Related Work
With the rapid development of data science and all fields in engineering, SDP problems are growing in scale.
Efficient and scalable algorithms have been developed, analyzed and implemented for solving large-scale
SDPs.

Augmented Lagrangian method (ALM). Originally introduced to enhance the performance of penalty
methods [49], ALM has shown promise in tackling large-scale SDPs [64]. Under mild conditions (strong
duality and the existence of a strictly complementary solution pair), linear convergence of ALM [12, 37, 68]
is established by leveraging its connection to proximal point methods [50] (PPM) and quadratic growth
properties [17,53].

Burer–Monteiro (BM) factorization method. The BM method [8] replaces the conic constraint by
X = RRT, reducing the problem to a lower-dimensional nonlinear program. Under specific rank and regu-
larity conditions, it recovers the global optimum of the original SDP [7,55]. Owing to its efficiency, the BM
method has achieved significant empirical success in real-world problems with low-rank solutions [23]. It can
also be combined with ALM [56] or ADMM [24].

Spectral bundle method (SBM). First proposed in [25], SBM has gained attention for its low per-
iteration cost. It enjoys sublinear convergence under mild assumptions [16]. Furthermore, if a strictly
complementary solution pair exists and the surrogate function captures the correct rank of the optimal
solution, SBM achieves local linear convergence [16, 36]. Similar to ALM, its linear convergence guarantees
rely on quadratic growth. Recent work also incorporates SBM into ALM [38].

First-order proximal methods. As a broad class of first-order methods derived from the monotone
operator theory [51], primal–dual proximal methods are also popular for SDP. In addition to ADMM [58],
symmetric Gauss-Seidel (sGS)-ADMM [11] has gained traction for solving general SDPs to medium accuracy.
Its connection to proximal ALM is elaborated in [10]. Other proximal methods, such as the primal–dual
hybrid gradient (PDHG) method [29], have likewise been explored. Nonetheless, establishing local linear
convergence remains much harder for this class of algorithms than for ALM or SBM, because it is not yet
clear whether a suitable growth condition holds for generic SDPs [22]. In particular, the known sufficient
conditions for linear convergence of ADMM, e.g., strong convexity [44], local polyhedrality [35] and other
growth conditions [13,15,27,39,65,66], either fail or remain unclear for SDP.

3 A Refined Error Bound for PSD Cone Projection
We see from (4) that the only nonlinear operation in ADMM is the projection onto the PSD cone. So, to
better understand the convergence of ADMM for SDP, we need to study the local behavior of the PSD cone
projector ΠSn+ . A classic result on the perturbation theory of ΠSn+ is [54, Theorem 4.6], which is restated
below for self-containment.

Lemma 1 ( [54, Theorem 4.6]). Given an n×n symmetric nonsingular matrix Z ∈ Sn, denote its eigenvalue
decomposition by

Z = Qdiag (λ1, . . . , λr, λr+1, . . . , λn)Q
T, where λ1 ≥ · · · ≥ λr > 0 > λr+1 ≥ · · · ≥ λn

and Q ∈ Rn×n is an orthogonal matrix. Then, the function ΠSn+ :S
n → Sn is Fréchet differentiable and its

Fréchet differential at Z for H ∈ Sn is given by

(ΠSn+(Z))
′(H) = Q(Ω ◦ (QTHQ))QT,
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where the n× n symmetric matrix Ω is defined as

Ω =



1 · · · 1 λ1

λ1−λr+1
· · · λ1

λ1−λn

...
. . .

...
...

. . .
...

1 · · · 1 λr

λr−λr+1
· · · λr

λr−λn
λ1

λ1−λr+1
· · · λr

λr−λr+1
0 · · · 0

...
. . .

...
...

. . .
...

λ1

λ1−λn
· · · λr

λr−λn
0 · · · 0


:=

[
Er ΘT

Θ 0

]
. (11)

Here, Er is the all-ones matrix of size r × r and Θ ∈ R(n−r)×r captures the off-block-diagonal part in Ω:

Θij =
λj

λj − λi+r
∈ (0, 1), for i ∈ [n− r], j ∈ [r]. (12)

Moreover, for any sufficiently small perturbation H ∈ Sn, it holds that

∥ΠSn+(Z +H)−ΠSn+(Z)−Q(Ω ◦ (QTHQ))QT∥2 = O(∥H∥22).

However, the following simple example illustrates that the above result may not be tight and motivates our
refined error bound. To see this, assume for brevity that Q = I in Lemma 1 and partition the perturbation
H ∈ Sn as

H =

[
HX HT

O

HO HS

]
, where HX ∈ Sr, HS ∈ Sn−r, and HO ∈ R(n−r)×r. (13)

We set HO = 0 and ∥H∥2 ≤ σmin (Z) := min{λr,−λr+1}. Then we have

Z +H =

[
ΛX +HX 0

0 ΛS +HS

]
,

where ΛX = diag (λ1, . . . , λr) and ΛS = diag (λr+1, . . . , λn). We then obtain from Weyl’s inequality that

λmin (ΛX +HX) ≥ λr + λmin (HX) ≥ λr − ∥HX∥2 ≥ 0,

λmax (ΛS +HS) ≤ λr+1 + λmax (HS) ≤ λr+1 + ∥HS∥2 ≤ 0,

where we also use the facts that ∥HX∥2 ≤ ∥H∥2 and ∥HS∥2 ≤ ∥H∥2. Therefore,

ΠSn+(Z +H)−ΠSn+(Z) =

[
ΛX +HX 0

0 0

]
−
[
ΛX 0
0 0

]
= Ω ◦H,

i.e., the residual term is exactly zero while ∥H∥2 is nonzero. This motivates the following refined error bound
for the PSD projection ΠSn+ , which involves the “off-block-diagonal” part HO in the residual.

Theorem 2. Given an n×n symmetric nonsingular matrix Z ∈ Sn, denote its eigenvalue decomposition by

Z = Qdiag (λ1, . . . , λr, λr+1, . . . , λn)Q
T, where λ1 ≥ · · · ≥ λr > 0 > λr+1 ≥ · · · ≥ λn

and Q ∈ Rn×n is an orthogonal matrix. Then, there exist two positive constants CEB and αEB such that for
all H ∈ Sn with ∥H∥2 ≤ CEB, it holds that

∥ΠSn+(Z +H)−ΠSn+(Z)−Q(Ω ◦ H̃)QT∥2 ≤ αEB · ∥H̃O∥2 · ∥H∥2, (14)

where H̃ := QTHQ is partitioned as

H̃ =

[
H̃X H̃T

O

H̃O H̃S

]
with H̃X ∈ Sr, H̃S ∈ Sn−r, and H̃O ∈ R(n−r)×r.

9



Remark 1. When Q = I, the bound (14) reduces to

∥ΠSn+(Z +H)−ΠSn+(Z)− Ω ◦H∥2 ≤ αEB · ∥HO∥2 · ∥H∥2.

This aligns with our observation in the motivating example: when HO = 0, both sides of the above inequality
becomes zero. One shall also note that, in general, H̃O is not the off-block-diagonal part of the perturbation
H. In fact, without using the notation H̃, the bound (14) can be written as

∥ΠSn+(Z +H)−ΠSn+(Z)−Q(Ω ◦ (QTHQ))QT∥2 ≤ αEB · ∥QT
SHQX∥2 · ∥H∥2,

where we partition the eigenvalue decomposition of Z as

Z =
[
QX QS

] [ΛX 0
0 ΛS

] [
QT

X

QT
S

]
.

Remark 2. As all norms are equivalent, (14) implies that there exists a positive constant α′
EB such that

∥ΠSn+(Z +H)−ΠSn+(Z)−Q(Ω ◦ H̃)QT∥F ≤ α′
EB · ∥H̃O∥F · ∥H∥F.

In the convergence analysis (Sections 4 to 6), we mainly use the Frobenius norm of matrices, consistent with
most literature.

Remark 3. In [12, Proposition 3.4], the authors establish another perturbation property for the PSD cone
projector. Their result has two key distinctions from Theorem 2: (1) their results cover cases where Z is
singular, while ours only focuses on the nonsingular case; (2) under the nonsingularity assumption, our
results can directly lead to theirs; i.e., Theorem 2 is stronger than [12, Proposition 3.4]. See Appendix A for
detailed discussion.

4 Local Linearization of ADMM
With a better understanding of the PSD cone projection, we now study the local behavior of ADMM.
Our analysis is different from the standard approaches for ADMM and starts by locally linearizing the
iteration (4). In particular, we show that when near optimum, the residual H(k+1) := Z(k) − Z⋆ is almost a
linear transformation of of the previous residual H(k), plus a correction term in the order of O(∥HO∥F∥H∥F).

The rest of the section is devoted to study this linearization and is organized as follows. Section 4.1 lists
all the assumptions made throughout the paper, Section 4.2 presents the local linearization of ADMM, and
Section 4.3 describes the properties of such a linearization.

4.1 Assumptions
We make the following assumption on the pair of primal–dual SDPs (1).

Assumption 1. (a) The linear operator A : Sn → Rm is surjective.

(b) The pair of primal–dual SDPs (1) has a nonempty set of KKT points.

From convex duality theory, any pair of primal–dual solutions (X⋆, y⋆, S⋆) of (1) satisfies complementary
slackness; i.e.,, X⋆ and S⋆ admit the decompositions in (6). Moreover, ⟨X⋆, S⋆⟩ = 0 and rank(X⋆) +
rank(S⋆) ≤ n. When the above inequality holds with equality, the solution pair (X⋆, y⋆, S⋆) is called strictly
complementary.

It is known that under Assumption 1, three-step ADMM (2) converges to a KKT point (X⋆, y⋆, S⋆), or
equivalently, one-step ADMM (4) converges to the point Z⋆ := X⋆−σZ⋆. Our analysis assumes additionally
that the convergent point of ADMM is strictly complementary.
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Assumption 2. Three-step ADMM (2) converges to a KKT point (X⋆, y⋆, S⋆) satisfying strict complemen-
tarity; i.e.,, rank(X⋆) + rank(S⋆) = n.

Assumption 2 is equivalent to the condition that the convergent point Z⋆ of one-step ADMM (4) is
nonsingular. Assumption 2 is a mild assumption in the sense that it holds for generic SDPs [1]. Numerical
experiments in Section 8 further demonstrate that even for degenerate SDPs with multiple solutions, one-
step ADMM often converges to a nonsingular Z⋆ (if one exists) when initialized with a random (standard
Gaussian) guess Z(0).

For ease of presentation, we assume without loss of generality that the convergent points X⋆ and S⋆

are diagonal, i.e., Q⋆ = In in (6). This assumption does not limit the scope of our conclusions because
we can readily construct a pair of SDPs equivalent to (1) and generate ADMM iterates (X̃(k), ỹ(k), S̃(k))
orthogonally similar to the iterates (X(k), y(k), S(k)) generated by (2). To see this, suppose (X(k), y(k), S(k))
converges to (X⋆, y⋆, S⋆) with Q⋆ ̸= In. We construct another pair of SDPs

Primal: minimize ⟨C̃, X̃⟩ Dual: maximize bTỹ

subject to ÃX̃ = b subject to Ã∗ỹ + S̃ = C̃

X̃ ∈ Sn+ S̃ ∈ Sn+

(15)

with primal variable X̃ ∈ Sn and dual variables (ỹ, S̃) ∈ Rm × Sn. The coefficients are C̃ := QT
⋆CQ⋆ and

Ãi := QT
⋆AiQ⋆ for all i ∈ [m]. If we apply three-step ADMM (2) to the modified SDP (15), starting at

X̃(0) := QT
⋆X

(0)Q⋆ and S̃(0) := QT
⋆S

(0)Q⋆, straightforward calculations show that the generated sequence
(X̃(k), ỹ(k), S̃(k)) is related to (X(k), y(k), S(k)) as follows:

X̃(k) = QT
⋆X

(k)Q⋆, ỹ(k) = y(k), S̃(k) = QT
⋆S

(k)Q⋆, for all k ∈ N.

Moreover, the sequence (X̃(k), ỹ(k), S̃(k)) converges to (QT
⋆X⋆Q⋆, y⋆, Q

T
⋆S⋆Q⋆), a KKT point of the modified

SDP (15).

4.2 Local Linearization
Now we study the local behavior of one-step ADMM (4). In particular, we linearize the ADMM iteration
when near optimum. For ease of representation, we define

P := ΠR(A∗) = A∗(AA∗)−1A, P⊥ := Id− P, Ω⊥ := En − Ω, Θ⊥ := E(n−r)×r −Θ,

where recall Er (resp., E(n−r)×r) is the all-ones matrix of size n × n (resp., (n − r) × r). With the above
abbreviations, we rewrite the iteration (4) as

Z(k+1) − Z⋆ =M(Z(k) − Z⋆) + Ψ(k), (16)

where

M(H) := P(Ω⊥ ◦H) + P⊥(Ω ◦H), (17)

Ψ(k) := (Id− 2P)(ΠSn+(Z
(k))−ΠSn+(Z⋆)− Ω ◦ (Z(k) − Z⋆)). (18)

This reformulation (16) says that when near optimum, the residual H(k+1) := Z(k+1) − Z⋆ is almost a
linear transformation of the previous residual H(k) := Z(k) − Z⋆, with a quadratic correction term Ψ(k) =
O(∥H(k)∥22) (see Lemma 1).

Proof of (16). Note that Z⋆ is a fixed point of (4), i.e.,

Z⋆ = P(−2ΠSn+(Z⋆) + Z⋆) + ΠSn+(Z⋆) +A∗(AA∗)−1b− σ(Id− P)C.
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Substituting back into (4) yields

Z(k+1) − Z⋆ = (Id− 2P)(ΠSn+(Z
(k))−ΠSn+(Z⋆)) + P(Z(k) − Z⋆)

= (Id− 2P)Ω ◦ (Z(k) − Z⋆) + P(Z(k) − Z⋆)

+ (Id− 2P)(ΠSn+(Z
(k))−ΠSn+(Z⋆)− Ω ◦ (Z(k) − Z⋆))

= (Id− 2P)Ω ◦ (Z(k) − Z⋆) + P(Z(k) − Z⋆) + Ψ(k),

by the definition of Ψ(k). Moreover, for any H ∈ Sn, we have

(Id− 2P)Ω ◦H − PH = P⊥(Ω ◦H)− P(Ω ◦H) + P(H)

= P⊥(Ω ◦H) + P(Ω⊥ ◦H)

=M(H),

where the first line uses P⊥ = Id− P and the second line uses Ω⊥ = Er − Ω.

4.3 Properties of M and Ψ(k)

Now we represent some properties of the linear operator M and the residual Ψ(k) that will be used to
establish the linear convergence of ADMM. In particular, we characterize the nonempty set of fixed points
Fix(M) := {H | M(H) = H}; see Proposition 1. Throughout this subsection, we partition the matrix H
(or H(k)) as in (13) with r := rank(X⋆).

Lemma 2. Suppose Ω ∈ Sn is defined as in (11) with r := rank(X⋆). For any matrix H ∈ Sn as partitioned
in (13), it holds that 〈

Ω ◦H,Ω⊥ ◦H
〉
= 2

〈
Θ ◦HO,Θ

⊥ ◦HO

〉
≥ 0 (19)

with equality only if HO = 0, and that

∥H∥2F − ∥M(H)∥2F = ∥P(Ω ◦H)∥2F + ∥P⊥(Ω⊥ ◦H)∥2F + 4
〈
Θ ◦HO,Θ

⊥ ◦HO

〉
. (20)

Proof. From the definition of Ω (11) and the partition of H (13), we see that

〈
Ω ◦H,Ω⊥ ◦H

〉
=

〈[
Er ΘT

Θ 0

]
◦
[
HX HT

O

HO HS

]
,

[
0 (Θ⊥)T

Θ⊥ En−r

]
◦
[
HX HT

O

HO HS

]〉
=

〈[
HX ΘT ◦HT

O

Θ ◦HO 0

]
,

[
0 (Θ⊥)T ◦HT

O

Θ⊥ ◦HO HS

]〉
= 2

〈
Θ ◦HO,Θ

⊥ ◦HO

〉
≥ 0. (21)

Since all the entries in Θ and Θ⊥ are strictly positive, the inner product (21) is zero if and only if HO = 0.
To show the second conclusion, we first decompose H as

H = P(Ω ◦H) + P(Ω⊥ ◦H) + P⊥(Ω ◦H) + P⊥(Ω⊥ ◦H). (22)

Then we have

∥H∥2F = ∥P(Ω ◦H)∥2F + ∥P(Ω⊥ ◦H)∥2F + ∥P⊥(Ω ◦H)∥2F + ∥P⊥(Ω⊥ ◦H)∥2F
+ 2

〈
P(Ω ◦H),P(Ω⊥ ◦H)

〉
+ 2

〈
P⊥(Ω ◦H),P⊥(Ω⊥ ◦H)

〉
,

and
∥M(H)∥2F = ∥P⊥(Ω ◦H) + P(Ω⊥ ◦H)∥2F = ∥P⊥(Ω ◦H)∥2F + ∥P(Ω⊥ ◦H)∥2F.

Combining both expressions with (19) gives the desirable result.
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Proposition 1. The linear operator M : Sn → Sn has the following properties.

(a) M is firmly nonexpansive under the Frobenius norm.

(b) The sequence {Mk}∞k=1 converges to ΠFix(M).

(c) H ∈ Fix(M) if and only if the following three conditions holds

HO = 0,

[
HX 0
0 0

]
∈ N (A),

[
0 0
0 HS

]
∈ R(A∗). (23)

(d) ∥M−ΠFix(M)∥op < 1.

Proof. Part (a): We verify the firm nonexpansiveness ofM via its definition:

⟨M(H), H⟩
=
〈
P(Ω⊥ ◦H) + P⊥(Ω ◦H),P(Ω ◦H) + P(Ω⊥ ◦H) + P⊥(Ω ◦H) + P⊥(Ω⊥ ◦H)

〉
= ∥M(H)∥2F +

〈
P(Ω⊥ ◦H) + P⊥(Ω ◦H),P(Ω ◦H) + P⊥(Ω⊥ ◦H)

〉
= ∥M(H)∥2F +

〈
P(Ω⊥ ◦H),P(Ω ◦H)

〉
+
〈
P⊥(Ω ◦H),P⊥(Ω⊥ ◦H)

〉
= ∥M(H)∥2F +

〈
Ω⊥ ◦H,Ω ◦H

〉
(24a)

≥ ∥M(H)∥2F, (24b)

where (24a) uses the fact that PP⊥ = 0 and (24b) uses (19).
Part (b) follows readily from part (a) and monotone operator theory; see [6, Proposition 5.16 (ii)] and [5,

Corollary 2.7 (ii)].
Part (c): From the decomposition of H (22) and the definition of M (17), we see that

H ∈ Fix(M) ⇐⇒ P⊥(Ω⊥ ◦H) = 0 and P(Ω ◦H) = 0.

On one hand, if H ∈ Fix(M), we conclude from Lemma 2 that HO has to be zero. Then expanding
P(Ω ◦H) = 0 gives

P
([
HX 0
0 0

])
= 0,

which is equivalent to the second condition in (23) (since P := ΠN (A)⊥). Similarly, expanding P⊥(Ω⊥◦H) =
0 gives the last condition in (23).

On the other hand, the first two conditions in (23) imply that P(Ω ◦H) = 0 (since all the entries in Θ
zero strictly positive). Similarly, HO = 0 and the last condition in (23) imply P⊥(Ω⊥ ◦H) = 0. Combining
the two results yields H ∈ Fix(M).

Part (d): is equivalent to show that ∥(M− ΠFix(M))H∥F < ∥H∥F for any nonzero H. If H ∈ Fix(M)
(and H ̸= 0), then ∥(M− ΠFix(M))H∥F = 0 < ∥H∥F. Otherwise, H /∈ Fix(M), and at least one of the
three conditions in (23) is not satisfied. So, at least one of the three terms on the right-hand side of (20) is
positive, which implies the desirable result.

Proposition 2. There exist two constants k̄Ψ ∈ N and αΨ > 0 such that for any integer k ≥ k̄Ψ, it holds
that

∥Ψ(k)∥F ≤ αΨ · ∥H(k)
O ∥F · ∥H

(k)∥F,
where H(k) := Z(k) − Z⋆ is partitioned as in (13).

Proof. The linear operator 2P − Id is the reflection operator, and thus preserves the Frobenius norm. Thus,
we have from the definition of Ψ(k) (18) that

∥Ψ(k)∥F = ∥ΠSn+(Z
(k))−ΠSn+(Z⋆)− Ω ◦ (Z(k) − Z⋆)∥F

= ∥ΠSn+(Z⋆ +H(k))−ΠSn+(Z⋆)− Ω ◦H(k)∥F.

The desirable result then follows from Theorem 2 and the fact that H(k) → 0 as k →∞.
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5 Local Linear Convergence with Nondegeneracy
In this section, we establish local linear convergence of ADMM when primal and dual nondegeneracy holds
at optimum. In this case, the pair of SDPs (1) has a unique KKT point and Assumption 2 is equivalent to
merely existence of a strictly complementary solution, which is a common regularity condition for SDP in
the literature.

We start with the simple characteristic of Fix(M) when nondegeneracy holds.

Lemma 3. Suppose Assumptions 1 and 2, primal nondegeneracy (8) and dual nondegeneracy (9) hold.
Then, it holds that Fix(M) = {0}.

Proof. For any H ∈ Fix(M), we see from Proposition 1 (c) and the definition of T ⊥
X⋆

that[
0 0
0 HS

]
∈ T ⊥

X⋆
and

[
0 0
0 HS

]
∈ R(A∗).

Yet primal nondegeneracy suggests T ⊥
X⋆
∩R(A∗) = {0}. Thus, HS = 0.

Similarly, from Proposition 1 (c) and the definition of T ⊥
S⋆

, we conclude that[
HX 0
0 0

]
∈ T ⊥

S⋆
and

[
HX 0
0 0

]
∈ N (A).

Yet dual nondegeneracy suggests that T ⊥
S⋆
∩N (A) = {0}. Thus, HX = 0.

Therefore, any point H ∈ Fix(M) must satisfy H = 0; i.e., Fix(M) = {0}.

Theorem 3. Suppose Assumptions 1 and 2, primal nondegeneracy (8) and dual nondegeneracy (9) hold.
For any ρ ∈ (∥M∥op, 1), there exists k̄ND ∈ N such that for any integer k ≥ k̄ND, it holds that

∥Z(k+1) − Z⋆∥F ≤ ρ∥Z(k) − Z⋆∥F.

Proof. Since Fix(M) = {0}, we have ΠFix(M) = 0 and ∥M∥op < 1 from Proposition 1. Then Proposition 2
implies that there exists k̄Ψ ∈ N such that ∥Ψ(k)∥F ≤ αΨ∥H(k)

O ∥F∥H(k)∥F for any integer k ≥ k̄Ψ. Then,
convergence of ADMM suggests that for any ρ ∈ (∥M∥op, 1), there exists k̄O such that for any integer
k ≥ max{k̄Ψ, k̄O} =: k̄ND, we have αΨ∥H(k)

O ∥F ≤ ρ− ∥M∥op and

∥Ψ(k)∥F ≤ (ρ− ∥M∥op) · ∥H(k)∥F = (ρ− ∥M∥op) · ∥Z(k) − Z⋆∥F.

Finally,

∥Z(k+1) − Z⋆∥F = ∥M(Z(k) − Z⋆) + Ψ(k)∥F
≤ ∥M∥op · ∥Z(k) − Z⋆∥F + ∥Ψ(k)∥F
≤ (∥M∥op + ρ− ∥M∥op) · ∥Z(k) − Z⋆∥F
= ρ∥Z(k) − Z⋆∥F.

Remark 4. Our proof framework can also cover the case where ND holds and SC fails. To stay consistent
with our SC assumption, the detailed proof of this case is deferred to Appendix B. So, combining Theorem 3
and the results in Appendix B, we establish local linear convergence of ADMM for SDP under only the
nondegeneracy conditions. Though this conclusion can be drawn from [22], our proof techniques are completely
different from theirs and do not involve the metric subregularity of the KKT operator. Moreover, numerical
evidence is provided in Section 8 to support the theoretical findings in Appendix B.
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6 Local R-linear Convergence without Nondegeneracy
Without two-side nondegeneracy, Fix(M) is not {0} and the proof technique in Section 5 does not apply
anymore. Another nice property of Fix(M) in Proposition 1 turns out to be useful: ∥M−ΠFix(M)∥op < 1.
Specifically, this property motivates us to study the “projected sequence”:

(Id−ΠFix(M))H
(k+1) = (Id−ΠFix(M))MH(k) + (Id−ΠFix(M))Ψ

(k)

= (M−ΠFix(M))(Id−ΠFix(M))H
(k) + (Id−ΠFix(M))Ψ

(k),

where the last equality follows from

(M−ΠFix(M))(Id−ΠFix(M)) =M−ΠFix(M) = (Id−ΠFix(M))M.

So, combining with the structure of Fix(M) and our refined error bound in Theorem 2, we are able to
establish the (R-)linear convergence of several “partial” sequences

(Id−ΠFix(M))H
(k), H

(k)
O , ΠTS⋆

(X(k)), ΠTX⋆
(S(k)),

where the last two terms correspond to the part of X(k) (resp., S(k)) that lies outside the minimal face
of X⋆ (resp., S(k)); see Lemmas 5 and 6. (One may already notice that in the nondegenerate case where
Fix(M) = {0}, the sequence (Id−ΠFix(M))H

(k) is exactly H(k), and the proof is done at this step.)
So, what is missing in the more general, possibly degenerate case? It turns out that an error bound

for ΠSn+ alone is insufficient; a growth condition is needed that accounts for both the PSD cone and an affine
set. More specifically, consider the spectrahedron V ∩ Sn+, where V is an affine space in Sn. Following the
convention in [53], we call dist(X,V ∩ Sn+) the forward error and dist(X,V) + [−λmin (X)]+ the backward
error. In the polyhderal case (i.e., Sn+ reduces to the nonnegative orthant), the backward error and the
forward error are in the same order [26], which leads to the sharpness condition and linear convergence of
first-order methods in linear programming [3]. In the spectrahedron case, however, it is shown in [53] that

forward error = O((backward error)1/2)

under mild conditions. So SDPs are not sharp in general and linear convergence does not follow in a
straightforward manner.

Fortunately, by exploiting the geometry of the PSD cone, it is shown in [53, Lemma 2.3] that the forward
error is in the same order as the backward error with respect to the regularized system

V ∩minface
(
X⋆,Sn+

)
, where minface

(
X⋆,Sn+

)
:=

{[
Γ 0
0 0

] ∣∣∣ Γ ∈ Sr+
}

= Sn+ ∩ T ⊥
S⋆
.

(The simple characteristic of the minimal face needs the assumption, made without loss of generality, that X⋆

is diagonal.) Extending the conclusion in [53, Lemma 2.3], we obtain a linear growth condition on the distance
to optimality. More specifically, we upper bound the distance from Z(k) to the optimal set by the sum of
the following three terms:

∥Z(k+1) − Z(k)∥F, ∥ΠTS⋆
(X(k))∥F, ∥ΠTX⋆

(S(k))∥F,

where the last two terms correspond to the part of X(k) (resp., S(k)) that lies outside the minimal face
of X⋆ (resp., S⋆); see Lemmas 7 and 8. Finally, combining the two ingredients (convergence of some partial
sequences and the new growth condition) yields the desirable linear convergence guarantees of ADMM
without nondegeneracy conditions.

Below we dive into the details, we remind that without two-side nondegeneracy, the primal and dual
solutions may not be unique. So we denote by X⋆ the optimal set for primal SDP in (1), by S⋆ the set of
dual optimal S, and by Z⋆ the set of fixed points for the one-step ADMM (4).

We begin our analysis with some basic results on ADMM, of which the proof mainly uses the ADMM
update rule (4). In fact, the inequality (26) is a special case of [67, Proposition 3.1].
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Lemma 4. The sequence {Z(k)} generated by one-step ADMM (4) satisfies

∥Z(k+1) − Z(k)∥F = ∥P(X − X̃)∥F + σ∥P⊥(S(k) − C)∥F, (25)

where X̃ is an arbitrary matrix satisfying AX̃ = b. And

∥Z(k+1) − Z(k)∥2F ≤ dist2(Z(k),Z⋆)− dist2(Z(k+1),Z⋆), (26)

for all k ∈ N.

Proof. See Appendix C.1.

6.1 R-linear Decay outside Minimal Faces
Lemma 5. Suppose Assumptions 1 and 2 hold. Let H(k) := Z(k) − Z⋆, k ∈ N, be partitioned as in (13).
Then, for any ρ ∈ (∥M−ΠFix(M)∥op, 1), there exists k̄ρ ∈ N such that for any integer k ≥ k̄ρ, it holds that

∥(Id−ΠFix(M))H
(k+1)∥F ≤ ρ∥(Id−ΠFix(M))H

(k)∥F.

Moreover, ∥H(k)
O ∥F converges R-linearly.

Proof. We first show that
∥(Id−ΠFix(M))Ψ

(k)∥F
∥(Id−ΠFix(M))H(k)∥F

→ 0 as k →∞.

To see this, we first note from Proposition 1 (c) that the off-block-diagonal part of ΠFix(M)(H
(k)) is zero,

which implies that (Id−ΠFix(M))H
(k) and H(k) have the same off-block-diagonal part. So,

∥(Id−ΠFix(M))H
(k)∥F ≥

√
2∥H(k)

O ∥F.

Then, we conclude from Proposition 2 that there exist k̄Ψ ∈ N and αΨ > 0 such that for any integer k ≥ k̄Ψ,
it holds that

∥(Id−ΠFix(M))Ψ
(k)∥F

∥(Id−ΠFix(M))H(k)∥F
≤ ∥Ψ(k)∥F
∥(Id−ΠFix(M))H(k)∥F

≤
αΨ∥H(k)

O ∥F∥H(k)∥F
∥(Id−ΠFix(M))H(k)∥F

≤ αΨ√
2
∥H(k)∥F,

which goes to 0 as k →∞.
Finally, the R-linear convergence of ∥H(k)

O ∥F follows naturally from the fact that ∥H(k)
O ∥F ≤ ∥(Id −

ΠFix(M))H
(k)∥F.

Theorem 2 plays a vital role in the proof of Lemma 5. If we used Lemma 1, we could only upper bound
∥(Id−ΠFix(M))Ψ

(k)∥F by ∥H(k)∥2F. This could only imply

∥(Id−ΠFix(M))Ψ
(k)∥F

∥(Id−ΠFix(M))H(k)∥F
= O

(
∥H(k)∥2F
∥H(k)

O ∥F

)
. (27)

In [35], the authors investigate general ADMM for convex problems with partially smooth objectives and
attempt to establish the linear convergence of the projected sequence (Id−ΠFix(M))H

(k). In [35, pp. 911,
line 5], the authors assert (without providing a justification) that the left-hand side of (27) vanishes as
k →∞. With the refined error bound in Theorem 2, our analysis confirms this claim in the context of SDP.
However, its validity in the more general convex setting remains unclear to us.

Remark 5. The R-linear convergence of ∥HO∥F requires the assumption, made without loss of generality,
that X⋆ and S⋆ are diagonal. Otherwise, when Q⋆ ̸= I, the R-linearly convergent sequence is ∥QT

⋆,SHQ⋆,X∥F,
where Q⋆ =

[
Q⋆,X Q⋆,S

]
.
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Lemma 6. Suppose Assumptions 1 and 2 hold. for any ρ ∈ (∥M−ΠFix(M)∥op, 1), there exists k̄T ∈ N such
that for any integer k ≥ k̄T , the two norms

∥ΠTS⋆
(X(k))∥F and ∥ΠTX⋆

(S(k))∥F

converge R-linearly.

Proof. For any k ∈ N, we have

∥Ψ(k)∥F = ∥ΠSn+(Z⋆ +H(k))−ΠSn+(Z⋆)− Ω ◦H(k)∥F
= ∥X(k) −X⋆ − Ω ◦H(k)∥F (28a)

= ∥ΠTS⋆
(X(k) −X⋆ − Ω ◦H(k)) + ΠT ⊥

S⋆
(X(k) −X⋆ − Ω ◦H(k))∥F (28b)

= ∥ΠTS⋆
(X(k) −X⋆ − Ω ◦H(k))∥F + ∥ΠT ⊥

S⋆
(X(k) −X⋆ − Ω ◦H(k))∥F (28c)

≥ ∥ΠTS⋆
(X(k) −X⋆ − Ω ◦H(k))∥F. (28d)

where (28a) uses X(k) = ΠSn+(Z
(k)), (28b) follows from the fact that TS⋆

is a linear subspace, and (28c) uses
the definition of T ⊥

S⋆
. Then, from the definition of TS⋆ (7), we have

ΠTS⋆
(Ω ◦H(k)) =

[
0 ΘT ◦HT

O

Θ ◦HO 0

]
. (29)

Combining (28d), and (29) and Proposition 2, we conclude that there exists k̄Ψ such that for any integer
k ≥ k̄Ψ, we have

∥ΠTS⋆
(X(k))∥F = ∥ΠTS⋆

(X(k) −X⋆)∥F
≤ ∥ΠTS⋆

(X(k) −X⋆ − Ω ◦H(k))∥F + ∥ΠTS⋆
(Ω ◦H(k))∥F

≤ ∥Ψ(k)∥F +
√
2∥H(k)

O ∥F
≤ (αΨ∥H(k)∥F +

√
2)∥H(k)

O ∥F,

The convergence of ADMM suggests that for sufficiently large k ∈ N, the residual H(k) is bounded, and thus
∥ΠTS⋆

(X(k)−X⋆)∥F is bounded above by a multiple of ∥H(k)
O ∥F, a R-linearly convergent sequence (Lemma 5).

The second part of the lemma follows similarly since S(k) = (1/σ)ΠSn+(−Z
(k)).

6.2 Linear Growth of Distance to Optimality
In this section, we present the one-iteration analysis for our convergence measure dist(Z(k),Z⋆). The following
lemma is inspired by [53, Lemma 2.3] and gives the regularized backward error for the (scaled) KKT system.

Lemma 7. Let (X⋆, y⋆, S⋆) be the convergent point of ADMM (2) satisfying strict complementarity (10).
Then, there exist three positive constants (δX , δS , κ) such that for all (X,S) ∈ Sn × Sn with ∥X∥F ≤ δX and
∥σS∥F ≤ δS, it holds that

κ · dist((X,σS),X⋆ × (σS⋆))

≤ ∥P(X − X̃)∥F + ∥P⊥(σS − σC)∥F + |⟨X,σC⟩+ ⟨X̃, σS⟩ − ⟨X̃, σC⟩|
+ [−λmin (X)]+ + [−λmin (σS)]+ + ∥ΠTS⋆

(X)∥F + ∥ΠTX⋆
(σS)∥F,

where X̃ is an arbitrary matrix with AX̃ = b and σ > 0 is the parameter in ADMM.

Proof. See Appendix C.2.
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Lemma 8. Suppose Assumptions 1 and 2 hold. Then, there exists k̄Z ∈ N and αZ > 0 such that for any
integer k ≥ k̄Z , it holds that

dist(Z(k),Z⋆) ≤ αZ(∥Z(k+1) − Z(k)∥F + ∥ΠTS⋆
(X(k))∥F + σ∥ΠTX⋆

(S(k))∥F),

Proof. We first bound the distance dist(Z(k),Z⋆) by the distance from (X(k), σS(k)) to the set X⋆ × (σS⋆)
as follows:

dist(Z(k),Z⋆) = inf{∥Z(k) − Z∥F | Z ∈ Z⋆}
= inf{∥Z(k) − (X − σS)∥F | X ∈ X⋆, S ∈ S⋆}

= inf{∥(X̃ − σS̃)− (X − σS)∥F | X̃ − σS̃ = Z(k), X ∈ X⋆, S ∈ S⋆}

≤
√
2 · inf

{√
∥X̃ −X∥2F + σ2∥S̃ − S∥2F

∣∣∣ X̃ − σS̃ = Z(k), X ∈ X⋆, S ∈ S⋆
}

≤
√
2 · dist((X(k), σS(k)),X⋆ × (σS⋆)).

Then, we bound dist((X(k), σS(k)),X⋆ × (σS⋆)) using Lemma 7 and the facts that X(k) ∈ Sn+ and S(k) ∈ Sn+
for all k ∈ N. More specifically, there exist (k̄Z , δX , δS) ∈ N×R++ ×R++ such that for any integer k ≥ k̄Z ,
we have ∥X(k)∥F ≤ δX , ∥S(k)∥F ≤ δS and

κ · dist((X(k), σS(k)),X⋆ × (σS⋆))

≤ ∥P(X(k) − X̃)∥F + σ∥P⊥(S(k) − C)∥F + σ|⟨X(k), C⟩+ ⟨X̃, S(k)⟩ − ⟨X̃, C⟩|
+ ∥ΠTS⋆

(X(k))∥F + σ∥ΠTX⋆
(S(k))∥F, (30)

where X̃ is an arbitrary matrix satisfying AX̃ = b. The inner product on the right-hand side of (30) can be
further bounded by

σ|⟨X(k), C⟩+ ⟨X̃, S(k)⟩ − ⟨X̃, C⟩|

= σ|⟨X(k), C⟩+ ⟨X̃, S(k)⟩ − ⟨X̃, C⟩|

= σ|⟨X − X̃, S(k) − C⟩| (31a)

= σ|⟨P(X − X̃),P(S(k) − C)⟩+ ⟨P⊥(X − X̃),P⊥(S(k) − C)⟩|

≤ σ∥P(X(k) − X̃)∥F∥P(S(k) − C)∥F + σ∥P⊥(X(k) − X̃)∥F∥P⊥(S(k) − C)∥F
≤ α′

Z(∥P(X(k) − X̃)∥F + σ∥P⊥(S(k) − C)∥F), (31b)

where (31a) uses the fact ⟨X(k), S(k)⟩ = 0 and in (31b) we define

α′
Z := max{σ(δS + ∥C∥F), δX + ∥A†b∥F}

(recall A†b is a valid choice for X̃). Finally, combining (30), (31b) with (25) in Lemma 4 and denoting
αZ :=

√
2(1 + α′

Z)/κ give the desirable result.

6.3 Main Theorem
Now we are ready to present our main theorem.

Theorem 4. Suppose Assumptions 1 and 2 hold. Then, for any ρ0 ∈ (∥M − ΠFix(M)∥op, 1), there exists
k̄ ∈ N such that for any integer k ≥ k̄, the distance to optimality dist(Z(k),Z⋆) converges R-linearly; i.e.,
there exists (α, ρ) ∈ R++ × (0, 1) such that

dist(Z(k),Z⋆) ≤ αρk.
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Proof. Define a(k) := dist(Z(k),Z⋆) for brevity. From Lemma 6, we deduce that there exist (k̄T , αX , αS) ∈
N× R++ × R++ such that for any integer k ≥ k̄T , we have

∥ΠTS⋆
(X(k))∥F ≤ αXρ

k
0 , ∥ΠTS⋆

(S(k))∥F ≤ αSρ
k
0 . (32)

Then, with k̄Z ∈ N as defined in Lemma 8, we have for any integer k ≥ k̄ := max{k̄T , k̄Z}+ 1 that

a(k+1) ≤ a(k) (33a)

≤ αZ(∥Z(k+1) − Z(k)∥F + ∥ΠTS⋆
(X(k))∥F + σ∥ΠTX⋆

(S(k))∥F) (33b)

≤ αZ

(√
(a(k))2 − (a(k+1))2 + ∥ΠTS⋆

(X(k))∥F + σ∥ΠTX⋆
(S(k))∥F

)
(33c)

≤ αZ

√
(a(k))2 − (a(k+1))2 + αZ(αX + αS)ρ

k
0 . (33d)

In (33a) we use (26) in Lemma 4, (33b) uses Lemma 8, (33c) uses (26) again, and finally (33d) uses (32).
Then, we partition the index set {k ∈ N | k ≥ k̄} into

I := {k ∈ N | k ≥ k̄, a(k+1) ≥ 2αZ(αX + αS)ρ
k
0}

and its complement Ic := {k ∈ N | k ≥ k̄} \ I.

1. If k ∈ I, then from (33d) we have

(a(k))2 − (a(k+1))2 ≥ (a(k+1) − αZ(αX + αS)ρ
2
0)

2 ≥ 1

4α2
Z

(a(k+1))2,

which implies that

a(k+1) ≤

√
4α2

Z

1 + 4α2
Z

a(k).

2. If k ∈ Ic, then readily we have
a(k+1) ≤ 2αZ(αX + αS)ρ

k
0 .

Combining the two cases yields the desirable local R-linear convergence of a(k). More specifically, define

b(k) := max{a(k), 2αZ(αX + αS)ρ
k−1
0 }, ρ := max

{√
4α2

Z

1 + 4α2
Z

, ρ0

}
∈ (0, 1),

and consider any pair (k − 1, k).

1. If (k − 1, k) ∈ I × I, then b(k+1) = a(k+1) ≤ ρa(k) = ρb(k).

2. If (k − 1, k) ∈ I × Ic, then b(k+1) ≤ 2αZ(αX + αS)ρ
k
0 ≤ ρ0a(k) ≤ ρb(k).

3. If (k − 1, k) ∈ Ic × I, then b(k+1) = a(k+1) ≤ ρa(k) ≤ ρb(k).

4. If (k − 1, k) ∈ Ic × Ic, then b(k+1) = 2αZ(αX + αS)ρ
k
0 = ρb(k).

To conclude, {b(k)} is a linearly convergent sequence with rate ρ ∈ (0, 1) and an upper bound for {a(k)}. So,
a(k) := dist(Z(k),Z⋆) converges R-linearly for sufficiently large k ∈ N.
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7 Proof of the Refined Error Bound
In this section, we detail the proof of Theorem 2, which builds an error bound for the PSD cone projection:

∥ΠSn+(Z +H)−ΠSn+(Z)− Ω ◦H∥2 ≤ αEB · ∥HO∥2 · ∥H∥2,

where we have assumed without loss of generality that Z is diagonal. A traditional way to compute the
orthogonal projection onto the PSD cone is via eigenvalue decomposition. Though conceptually simple, this
method destroys the block structure of Z +H (as H is not diagonal). So, to prove Theorem 2, we advocate
for a seemingly much more complex procedure inspired by iterative methods for eigenvalue decomposition
(see, e.g., [47]). We detail the iterative algorithm in Algorithm 1 and briefly discuss the high-level intuition
here. Consider the matrix

Z +H = diag (λ1, . . . , λr, λr+1, . . . , λn) +

[
HX HT

O

HO HS

]
=:

[
ZX,0 ZT

O,0

ZO,0 ZS,0

]
. (34)

When ∥H∥2 is sufficiently small, we have ZX,0 = ΛX +HX ∈ Sr++ and ZS,0 = ΛS +HS ∈ Sn−r
−− . Algorithm 1

explicitly constructs an orthogonal matrix Q∞ that is close to In and satisfies

QT
∞

[
ZX,0 ZT

O,0

ZO,0 ZS,0

]
Q∞ =

[
ZX,∞ 0
0 ZS,∞

]
. (35)

(So roughly speaking, ZX,∞ ∈ Sr++ (resp., ZS,∞ ∈ Sn−r
−− ) is also close to ZX,0 (resp., ZS,0).) To compute

the orthogonal matrix Q∞ in (35), we solve a series of Sylvester equations (36) for Wℓ and show that the
recursively defined matrix Qℓ+1 ← Qℓ exp(Wℓ) converges to Q∞. As we will see later, each Sylvester equation
helps build a skew-symmetric matrix Wℓ such that the off-block-diagonal part of (In +Wℓ)

TZℓ(In +Wℓ) is
gradually removed at each iteration; see (37). Then, with Q∞ computed (or approximated), we can derive
a fine-grained error bound for

ΠSn+(Z +H)−ΠSn+(Z)− Ω ◦H = Q∞

[
ZX,∞ 0
0 0

]
QT

∞ −ΠSn+(Z)− Ω ◦H,

which further leads to the conclusion in Theorem 2.

Proof outline. The proof of Theorem 2 is accomplished by exploiting the properties of the sequences
generated by Algorithm 1.

1. We show that at each iteration, the Sylvester equation (36) is well-defined and has a unique solution.
We ensure this by showing ZX,ℓ ∈ Sr++, ZS,ℓ ∈ Sn−r

−− for all ℓ ∈ N.

2. We show that the limit of the sequence {Vℓ}∞ℓ=0 exists and is exactly ΠSn+(Z +H). This is achieved by
showing the exponential decay of the three sequences

∥ZX,ℓ+1 − ZX,ℓ∥2, ∥ZS,ℓ+1 − ZS,ℓ∥2, ∥Qℓ+1 −Qℓ∥2.

3. Last, we show that

∥ΠSn+(Z +H)−ΠSn+(Z)− Ω ◦H∥2

=

∥∥∥∥Q∞

[
ZX,∞ 0
0 0

]
QT

∞ −ΠSn+(Z)− Ω ◦H
∥∥∥∥
2

≤
∥∥∥∥(In +W0)

[
ZX,∞ 0
0 0

]
(In +W0)

T −ΠSn+(Z)− Ω ◦H
∥∥∥∥
2

+

∥∥∥∥Q∞

[
ZX,∞ 0
0 0

]
QT

∞ − (In +W0)

[
ZX,∞ 0
0 0

]
(In +W0)

T

∥∥∥∥
2

(39)

Then, we bound the growth of the first term on the right-hand side of (39) by O (∥HO∥2 · ∥H∥2) and
that of the second term by O

(
∥HO∥22

)
.
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Algorithm 1: An iterative elimination procedure for PSD cone projection
Input: A nonsingular matrix Z ∈ Sn with r positive eigenvalues, and a perturbation H ∈ Sn.
Output: ΠSn+(Z +H)← V∞.

1 Initialization: Z0 :=

[
ZX,0 ZT

O,0

ZO,0 ZS,0

]
← Z +H and Q0 ← In.

2 for ℓ = 0 to ∞ do
3 (1) Solve the following Sylvester equation for WO ∈ R(n−r)×r

WOZX,ℓ + (−ZS,ℓ)WO = ZO,ℓ (36)

and obtain WO,ℓ ←WO.
4 (2) Compute

Wℓ ←
[

0 −WT
O,ℓ

WO,ℓ 0

]
Zℓ+1 :=

[
ZX,ℓ+1 ZT

O,ℓ+1

ZO,ℓ+1 ZS,ℓ+1

]
← exp(Wℓ)

T

[
ZX,ℓ ZT

O,ℓ

ZO,ℓ ZS,ℓ

]
exp(Wℓ). (37)

5 (3) Compute Qℓ+1 ← Qℓ exp(Wℓ) and

Vℓ+1 ← Qℓ+1

[
ZX,ℓ+1 0

0 0

]
QT

ℓ+1. (38)

6 end

Remark 6. We reiterate that in (34), we have assumed without loss of generality that Z is diagonal.
Extension of the presented proof to the non-diagonal case is straightforward and detailed in Section 7.4.

7.1 Step 1: Error Bound for Sylvester Equations
Lemma 9 shows that ZX,ℓ ∈ Sr++ and ZS,ℓ ∈ Sn−r

−− imply the well-posedness of the Sylvester equation (36).
Then, Lemma 10 proves that the definitenss of ZX,ℓ and ZS,ℓ holds as long as ZX,0 ∈ Sr++, ZS,0 ∈ Sn−r

−− and
∥ZO,0∥2 is sufficiently small. With these two lemmas, we complete Step 1 in the proof outline. For ease of
notation, we define d :=

√
min{r, n− r} and

ηℓ :=
d

λmin (ZX,ℓ)− λmax (ZS,ℓ)
for ℓ ∈ N. (40)

Lemma 9. At iteration ℓ in Algorithm 1, suppose ZX,ℓ ∈ Sr++, ZS,ℓ ∈ Sn−r
−− , and ∥ZO,ℓ∥2 ≤ 3

4ηℓ
. Then, the

Sylvester equation (36) has a unique solution WO,ℓ satisfying ∥WO,ℓ∥2 ≤ ηℓ · ∥ZO,ℓ∥2. Moreover, it holds that

max{∥ZX,ℓ+1 − ZX,ℓ∥2, ∥ZS,ℓ+1 − ZS,ℓ∥2, ∥ZO,ℓ+1∥2}

≤
(
4

9
η4ℓ · ∥Z0∥32 +

4

3
η3ℓ · ∥Z0∥22 +

13

3
η2ℓ · ∥Z0∥2 + 4ηℓ

)
· ∥ZO,ℓ∥22

for all ℓ ∈ N.

Proof. See Appendix D.1.

The proof of Lemma 10 needs two auxiliary functions. Define f(x) : [0,∞) 7→ R as any fixed continuous
and monotonically increasing function satisfying: (1) f(0) = 0; (2) f(x) ≥ 9

4x
4 + 4

3x
3 + 13

3 x
2 + 4x for all
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x ≥ 0. Then, define g(y) : [0,∞) 7→ R as:

g(y) := y · f (2η0 · (∥ZX,0∥2 + ∥ZS,0∥2 + y)) · f (η0 · (∥ZX,0∥2 + ∥ZS,0∥2 + y)) (41)

So, g(y) is also monotonically increasing on [0,∞) and g(0) = 0.

Lemma 10. Suppose ZX,0 ∈ Sr++ and ZS,0 ∈ Sn−r
−− . Define two positive constants αK and CK :

αK =
f
(
η0 · (∥ZX,0∥2 + ∥ZS,0∥2 + 1

2 )
)

∥ZX,0∥2
, CK := min {C1, C2, C3, C4, C5} , (42)

where

C1 =
1

2
, C2 = g−1(∥ZX,0∥22), C3 =

3

8η0
,

C4 =
1√

4η0αK
, C5 =

√
1

4αK
min {λmin (ZX,0) ,−λmax (ZS,0)}.

For any ∥ZO,0∥2 ≤ CK and for any integer ℓ ≥ 1, it holds that

∥ZO,ℓ∥2 ≤ αK · ∥ZO,0∥ℓ+1
2 (43a)

∥ZX,ℓ − ZX,0∥2 ≤ αK ·
ℓ−1∑
i=0

∥ZO,0∥i+2
2 (43b)

∥ZS,ℓ − ZS,0∥2 ≤ αK ·
ℓ−1∑
i=0

∥ZO,0∥i+2
2 . (43c)

Moreover, for any integer ℓ ≥ 1, it holds that

2

3
η0 ≤ ηℓ ≤ 2η0, λmin (ZX,ℓ) ≥

1

2
λmin (ZX,0) > 0 λmax (ZS,ℓ) ≤

1

2
λmax (ZS,0) < 0.

Thus, ZX,ℓ ∈ Sn++ and ZS,ℓ ∈ Sn−− for all ℓ ∈ N.

Proof. See Appendix D.2.

7.2 Step 2: Convergence of {Vℓ}∞ℓ=0

Now we show that the sequence {Vℓ}∞ℓ=0 converges to ΠSn+(Z + H); see Lemma 12. This is achieved by
bounding the distance between Qℓ+1 and Qℓ and that between Qℓ and In +W0; see Lemma 11.

Lemma 11. For any integer ℓ ≥ 1, it holds that

∥Qℓ+1 −Qℓ∥2 ≤
8

3
η0αK · ∥ZO,0∥ℓ+1

2 (44)

and

∥Qℓ − (In +W0)∥2 ≤
2

3
η20 · ∥ZO,0∥22 +

8

3
η0αK ·

ℓ−1∑
i=1

∥ZO,0∥i+1
2 (45)

where η0 is defined in (40) and αK in (42).

Proof. See Appendix D.3.

Lemma 12. The sequence {Vℓ}∞ℓ=1 generated in Algorithm 1 converges to ΠSn+(Z +H).

Proof. See Appendix D.4.
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7.3 Step 3: Proof of Theorem 2
Before we execute the last step of our proof, two more details are needed. First, observe that all the three
constants, η0 in (40), αK and CK in (42) implicitly rely on ZX,0 = ΛX +HX and ZS,0 = ΛS +HS (though
independent of ZO,0 = HO). Yet, the constants αEB and CEB in Theorem 2 should be independent of the
perturbation H. The uniform bounds of η0, αK and CK is achieved in Lemma 13.

Lemma 13. Suppose ∥H∥2 ≤ 1
2 min{λr,−λr+1}. Then, it holds that

λmin (ZX,0) ≥
1

2
λr > 0 λmax (ZS,0) ≤

1

2
λr+1 < 0.

Moreover, there exist three positive constants αK,f , η0,f and CK,f , only depending on n, r and the eigenvalues
{λi}ni=1 of Z, such that

η0 ≤ η0,f , αK ≤ αK,f , CK ≥ CK,f > 0.

Proof. See Appendix D.5.

With Lemma 13, as long as ∥H∥2 ≤ min{CK,f ,
1
2 min{λr,−λr+1}}, we can safely replace αK and η0 in

Lemmas 9 to 12 with αK,f and η0,f .
As the last ingredient, Lemma 14 is needed to control the error in the first Sylvester equation (ℓ = 0),

which only relies on n, r, and the eigenvalues {λi}ni=1 of Z.

Lemma 14. Suppose that HX and HS satisfy ∥HX∥2+∥HS∥2 ≤ λr−λr+1

2nd , and that WO,0 is the solution for

WOZX,0 + (−ZS,0)WO = ZO,0

⇐⇒ WO(ΛX +HX)− (ΛS +HS)WO = HO.

Then, it holds that

∥WO,0 −Θ0 ◦HO∥2 ≤
2nd

(λr − λr+1)2
· ∥HO∥2 · (∥HX∥2 + ∥HS∥2),

where

Θ0 =


1

λ1−λr+1
· · · 1

λr−λr+1

...
. . .

...
1

λ1−λn
· · · 1

λr−λn

 ∈ R(n−r)×r.

Proof. See Appendix D.6.

To prove Theorem 2, it only remains to upper bound the two terms on the right-hand side of (39)
one-by-one. Define CEB as

CEB := min

{
CK,f ,

1

2
min {λr,−λr+1} ,

λr − λr+1

4nd

}
. (46)

Note that in the following proof, we have already replaced αK and η0 in Lemmas 9 to 12 with αK,f and η0,f .

1. The first term on the right-hand side of (39) is bounded by∥∥∥∥(In +W0)

[
ZX,∞ 0
0 0

]
(In +W0)

T −ΠSn+(Z)− Ω ◦H
∥∥∥∥
2

=

∥∥∥∥(In +W0)

[
ZX,∞ 0
0 0

]
(In +W0)

T −
[
ΛX 0
0 0

]
− Ω ◦H

∥∥∥∥
2

=

∥∥∥∥[ ZX,∞ ZX,∞W
T
O,0

WO,0ZX,∞ WO,0ZX,∞W
T
O,0

]
−
[
ΛX +HX ΘT ◦HT

O

Θ ◦HO 0

]∥∥∥∥
2

≤ ∥ZX,∞ − (ΛX +HX)∥2 + ∥WO,0ZX,∞W
T
O,0∥2 + ∥WO,0ZX,∞ −Θ ◦HO∥2

≤ ∥ZX,∞ − (ΛX +HX)∥2 + ∥WO,0ZX,∞W
T
O,0∥2 + ∥WO,0ZX,0 −Θ ◦HO∥2

+ ∥WO,0(ZX,∞ − ZX,0)∥2. (47)

23



Again, we bound the right-hand side of (47) one-by-one.

(a) For the term ∥ZX,∞ − (ΛX +HX)∥2, we have from ZO,0 = HO that

∥ZX,∞ − (ΛX +HX)∥2 = ∥ZX,∞ − ZX,0∥2

=

∥∥∥∥∥
∞∑
i=0

(ZX,i+1 − ZX,0)

∥∥∥∥∥
2

≤
∞∑
i=0

∥ZX,i+1 − ZX,0∥2

≤αK,f ·
∞∑
i=0

∥ZO,0∥i+2
2 (48a)

=αK,f ·
∞∑
i=0

∥HO∥i+2
2 = αK,f ·

∥HO∥22
1− ∥HO∥2

≤2αK,f · ∥HO∥22, (48b)

where (48a) uses (43a) and (48b) uses ∥HO∥2 ≤ ∥H∥2 ≤ CK,f ≤ 1
2 .

(b) For the term ∥WO,0ZX,∞W
T
O,0∥2, we have

∥WO,0ZX,∞W
T
O,0∥2 ≤ ∥WO,0∥22 · ∥ZX,∞∥2 ≤ η20,f · ∥HO∥22 · ∥ZX,∞∥2.

Since ∥ZX,∞∥2 ≤ ∥Z∞∥2 = ∥Z +H∥2 is bounded, there exists a positive constant α1 such that
∥WO,0ZX,∞W

T
O,0∥2 ≤ α1 · ∥HO∥22.

(c) For the term ∥WO,0ZX,0 −Θ ◦HO∥2, we have

∥WO,0ZX,0 −Θ ◦HO∥2
= ∥WO,0(ΛX +HX)−Θ ◦HO∥2
≤ ∥WO,0ΛX −Θ ◦HO∥2 + ∥WO,0HX∥2
= ∥WO,0ΛX − (HO ◦Θ0)ΛX∥2 + ∥WO,0HX∥2 (49a)
≤ λ1 · ∥WO,0 − (HO ◦Θ0)∥2 + ∥WO,0HX∥2

≤ 2ndλ1
(λr − λr+1)2

· ∥HO∥2 · (∥HX∥2 + ∥HS∥2) + ∥WO,0HX∥2 (49b)

≤ 2ndλ1
(λr − λr+1)2

· ∥HO∥2 · (∥HX∥2 + ∥HS∥2) + η0,f · ∥HO∥2 · ∥HX∥2 (49c)

≤ α2∥HO∥2 · (∥HX∥2 + ∥HS∥2) (49d)

for some positive constant α2. Here, (49a) holds since for a diagonal matrix D:

(AD) ◦B = B ◦ (AD) = (B ◦A)D,

(49b) comes from Lemma 14 since

∥HX∥2 + ∥HS∥2 ≤ 2∥H∥2 ≤ 2CK,f ≤ 2 · λr − λr+1

4nd
=
λr − λr+1

2nd
,

and (49c) follows from Lemma 9 and ∥WO,0∥2 ≤ η0,f · ∥ZO,0∥2 = η0,f · ∥HO∥2.
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(d) For the term ∥WO,0(ZX,∞ − ZX,0)∥2, we have

∥WO,0(ZX,∞ − ZX,0)∥2 ≤ ∥WO,0∥2 · ∥ZX,∞ − ZX,0∥2
≤ η0,f · ∥HO∥2 · ∥ZX,∞ − ZX,0∥2

≤ η0,f · ∥HO∥2 · αK,f ·
∞∑
i=0

∥HO∥i+2
2 (50a)

≤ η0,fαK,f · ∥HO∥2 ·
∥HO∥22

1− ∥HO∥2
≤ 2η0,fαK,f · ∥HO∥32, (50b)

where (50a) follows from (43b).

2. For the second term on the right-hand side of (39), we see from Lemma 11 that

∥Q∞ − (In +W0)∥2 ≤
2

3
η20,f · ∥HO∥22 +

8

3
η0,fαK,f ·

∞∑
i=1

∥HO∥i+1
2

=
2

3
η20,f · ∥HO∥22 +

8

3
η0,fαK,f ·

∥HO∥22
1− ∥HO∥2

≤ 2

3
η20,f · ∥HO∥22 +

16

3
η0,fαK,f · ∥HO∥22.

Together with the boundedness of ∥In + W0∥2 and ZX,∞, we conclude that there exists a positive
constant α3 such that ∥∥∥∥Q∞

[
ZX,∞ 0
0 0

]
QT

∞ − (In +W0)

[
ZX,∞ 0
0 0

]
(In +W0)

T

∥∥∥∥
2

≤ 2

∥∥∥∥(Q∞ − (In +W0))

[
ZX,∞ 0
0 0

]
(In +W0)

T

∥∥∥∥
2

+

∥∥∥∥(Q∞ − (In +W0))

[
ZX,∞ 0
0 0

]
(Q∞ − (In +W0))

T

∥∥∥∥
2

≤ α3 · ∥HO∥22. (51)

Therefore, combining (39), (47), (48b), (49d), (50b) and (51) yields

∥ΠSn+(Z +H)−ΠSn+(Z)− Ω ◦H∥2
≤ 2αK,f · ∥HO∥22 + α2 · ∥HO∥22 + α2 · ∥HO∥2 · (∥HX∥2 + ∥HS∥2)

+ 2η0,fαK,f · ∥HO∥22 + α3 · ∥HO∥22
≤ αEB · ∥HO∥2 · ∥H∥2

for some positive constant αEB. This concludes the proof.
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7.4 Generalization to the Non-diagonal Case
Though the previous analysis is performed under the assumption that Z is a diagonal matrix, straightforward
computation generalizes our result to the more general, non-diagonal case. When Q ̸= In, we have

∥ΠSn+(Z +H)−ΠSn+(Z)−Q(QTHQ)QT∥2
= ∥Q(QTΠSn+(Z +H)Q−QTΠSn+(Z)Q−Q

THQ)QT∥2
= ∥QTΠSn+(Z +H)Q−QTΠSn+(Z)Q−Q

THQ∥2 (52a)

= ∥ΠSn+(Q
TZQ+QTHQ)−ΠSn+(Q

TZQ)−QTHQ∥2 (52b)

= ∥ΠSn+(Q
TZQ+ H̃)−ΠSn+(Q

TZQ)− H̃∥2
≤ αEB · ∥H̃O∥2 · ∥H̃∥2, (52c)

where (52a) follows from the fact that ∥QA∥2 = ∥A∥2, for any matrix A, (52b) uses ΠSn+(Q
TXQ) =

QTΠSn+(X)Q, and (52c) holds since QTZQ is diagonal.

8 Numerical Experiments
In this section, numerical evidence is reported to support our theoretical findings. In particular, numerical
experiments are conducted to demonstrate the following.

1. Local (R-)linear convergence is observed, regardless of the (non)degeneracy of the SDP.

2. The established (R-)linear rate of convergence (e.g., in Theorem 3 and Lemma 5) is numerically tight.

3. When SC is close to failure, ADMM for SDP may be extremely slow and no clear linear convergence
can be observed within the stated computational budget.

Experiments are performed on a high-performance workstation equipped with a 2.7 GHz AMD 64-Core
sWRX8 Processor and 1 TB of RAM. For the standard SDP (1), we denote primal infeasibility rp, dual
infeasibility rd, and relative gap rgap as:

rp :=
∥AX − b∥2
1 + ∥b∥2

, rd :=
∥A∗y + S − C∥F

1 + ∥C∥F
, rgap :=

∣∣⟨C,X⟩ − bTy∣∣
1 + |⟨C,X⟩|+ |bTy|

,

and define the maximum KKT residual rmax := max{rp, rd, rgap}. Unless specified, the stopping criteria
are rmax ≤ 10−10, or the maximum iteration number goes beyond 106, or the CPU time exceeds 100 hours.
Table 1 presents the data for all the tested SDP instances. The strict complementarity condition is checked
by computing λmin (|Z⋆|), the smallest eigenvalues of Z⋆ in absolute values.

8.1 Demonstration of Local Linear Convergence
In this section, we solve a considerable number of SDPs arising from various applications. In all the ex-
periments, local linear convergence of ADMM is clearly observed, regardless of the (non)degeneracy of the
SDPs.

• MAXCUT [14]. Figure 2 reports three representative examples. In all three cases, strict comple-
mentarity holds numerically and ADMM enters the linear convergence region rather quickly.

• Hamming set problems [48]. Figure 3 reports three representative examples. In all three cases,
strict complementarity holds numerically.

• Maximum stable set problems [42]. Figure 4 reports three representative examples. In all three
cases, strict complementarity holds numerically.
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n m σ
MAXCUT-G* 800 800 1

hamming-10-2 1024 23041 0.01
hamming-7-5-6 128 1793 0.01
hamming-9-5-6 512 53761 0.01

theta-102 500 37467 1
XM-48 144 241 100
XM-149 447 746 100

BQP-r*-30-* 496 91326 100
QS-20 231 16402 100
QS-40 861 236202 100

Quasar-200 804 122601 100
swissroll 800 3380 1
1dc-1024 1024 24064 100
neosfbr25 577 14376 1

n m σ
hamming-9-8 512 2305 0.01
hamming-11-2 2048 56321 0.01
hamming-8-3-4 256 16129 0.01

theta-12 600 17979 1
theta-123 600 90020 1

XM-93 279 466 100
BQP-r*-20-* 231 20601 100
BQP-r*-40-* 861 296001 100

QS-30 496 77377 100
Quasar-100 404 31301 100
Quasar-500 2004 756501 100
cnhil10 220 5005 0.01
rose13 105 2379 1

Table 1: Details about all the tested SDP instances. n is the size of the matrix, m is the number of equality
constraints, and σ is the fixed penalty paramater in ADMM.

MAXCUT-G1 MAXCUT-G9 MAXCUT-G18

Figure 2: MAXCUT problems with with random (standard Gaussian) initial guess. In all cases, the con-
verging Z⋆ is nonsingular.

hamming-9-8 hamming-11-2 hamming-7-5-6

Figure 3: Additional Hamming graph problems with with random (standard Gaussian) initial guess. In all
cases, the converging Z⋆ is nonsingular.
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theta-12 theta-102 theta-123

Figure 4: Maximum stable set problems with with random (standard Gaussian) initial guess. In all cases,
the converging Z⋆ is nonsingular.

XM-48 XM-93 XM-149

Figure 5: Structure-from-motion problems with with random (standard Gaussian) initial guess. In all cases,
the converging Z⋆ is nonsingular.

• Structure from motion problems [23]. Figure 5 reports three representative examples. In all three
cases, strict complementarity holds numerically. For XM-48 and XM-93, the maximum KKT residual
rmax can only reach 10−8 due to numerical errors from eigenvalue decomposition and the unbalance
between infeasibility and relative gap.

• Binary quadratic programming (BQP). We consider the second-order moment-sum-of-squares
(moment-SOS) relaxation [32] of the following polynomial optimization problem

minimize 1
2x

TQx+ cTx
subject to 1− x2i = 0, i ∈ [n],

where the optimization variable is x ∈ Rn, and the data are Q ∈ Sn and c ∈ Rn. Depending on the
data, nondegeneracy (ND) and strict complementarity (SC) conditions may or may not hold.

– Case 1: primal ND fails and SC holds. When c ∼ N (0, In), the SDP relaxation is empirically
tight and the primal optimal solution has rank one [56, 63]. In this case, primal nondegeneracy
fails. Figure 6 reports three representative examples with random (standard Gaussian) initial
guess.

– Case 2: primal ND fails and SC fails. We test the same BQP instances with all-zeros
initialization. As shown in Figure 7, strict complementarity seems to fail. Nonetheless, the failure
of strict complementarity does not deteriorate the linear convergence rate.

– Case 3: both primal and dual ND fail and SC holds. When c = 0, the SDP relaxation is
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BQP-r1-20-1 BQP-r1-30-1 BQP-r1-40-1

Figure 6: Random BQP problems with c ∼ N (0, In) with random (standard Gaussian) initial guess. In all
cases, the converging Z⋆ is nonsingular.

BQP-r1-20-1 BQP-r1-30-1 BQP-r1-40-1

Figure 7: Random BQP problems with c ∼ N (0, In) with all-zero initial guess. In all cases, the converging Z⋆

is singular.

BQP-r2-20-1 BQP-r2-30-1 BQP-r2-40-1

Figure 8: random BQP problems with c = 0 with random (standard Gaussian) initial guess, under which
both primal and dual nondegeneracy fail. In all cases, the converging Z⋆ is nonsingular.
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Quasar-100 Quasar-200 Quasar-500

Figure 9: Quasar problems with random (standard Gaussian) initial guess. In all cases, the converging Z⋆

is nonsingular.

QS-20 QS-30 QS-40

Figure 10: Random QS problems with random (standard Gaussian) initial guess. In all cases, the converg-
ing Z⋆ is singular.

still empirically tight [56, 63]. However, the primal optimal solution is no longer unique (due to
sign symmetry). In this case, both primal and dual nondegeneracy fail and linear convergence is
still observed; see Figure 8.

• Quasar problems [61]. In Quasar problems, the primal solution is unique and has rank one. Similar
to BQP, primal nondegeneracy always fails in Quasar problems [61]. Figure 9 reports three examples,
in which strict complementarity holds numerically.

• Quartic function over sphere (QS). Another classical polynomial optimization problem [56, 63].
In its second-order relaxation, the primal solution is unique and has rank one. Similar to BQP, primal
nondegeneracy of QS always fails. In comparison, Figure 10 reports three representative examples. In
these cases, strict complementarity seems to fail numerically, but linear convergence is still observed.

Additional numerical results can be found in Appendix E.

8.2 Demonstration of Numerical Rates
In this section, we numerically verify that the tightness of the derived (R-)linear rate of convergence. In the
following two experiments, primal and dual nondegeneracy are checked numerically as follows. We compute

W1 :=
[
svec (A1) svec (A2) · · · svec (Am)

]
W2 :=

[
· · · svec

(
Q⋆Ei,jQ

T
⋆

)
· · ·
]
, fori = r + 1, . . . , n, and j = i, . . . , n,
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(a) ND holds and SC holds (b) ND holds and SC fails

Figure 11: Demonstration of numerical rates. (a) Plot of ∥H(k)
O ∥F from a toy structure-from-motion problem.

(b) Plot of both ∥H(k)∥F and ∥H(k)
O ∥F from a toy BQP problem. In both cases, the numerical rates match

quite well with the theory; see Theorem 3 and Lemma 5.

where Ei,j ∈ Rn×n is the (i, j)th elementary matrix; i.e., all the elements are zero except the (i, j)th entry
is one. It is clear that the columns of W1 ∈ Rt(n)×m form a basis of R(A∗) and those of W2 ∈ Rt(n)×t(n−r)

form a basis of T ⊥
X⋆

. To check primal nondegeneracy R(A∗) ∩ T ⊥
X⋆

= {0}, it suffices to check the following
rank condition:

rank(W1) + rank(W2) = rank(
[
W1 W2

]
). (53)

Dual nondegeneracy can be checked in a similar manner.

(a) ND holds and SC holds. In Figure 11 (a), we consider a toy problem from structure-from-motion
dataset with 15 frames. In this case, the matrix size is n = 15 and the numerical ranks are

rank(W1) = 903, rank(W2) = 76, rank(
[
W1 W2

]
) = 979,

which satisfies the condition (53), and thus primal nondegeneracy holds. Dual nondegeneracy is verified
similarly. In this nondegenerate case, we see from Theorem 3 that the sequence ∥H(k)∥F converges
linearly with rate ∥M∥op = 0.998, which matches quite well with the numerical rate 0.996 from
Figure 11 (a).

(b) ND fails and SC holds. In Figure 11 (b), we consider a toy BQP problem with 10 binary variables.
So, the matrix size is n = 66 and the numerical ranks are

rank(W1) = 1826, rank(W2) = 2145, rank(
[
W1 W2

]
) = 2211,

which implies the failure of primal nondegeneracy. Similarly, dual nondegeneracy holds numerically.
From Lemma 5, the sequence ∥H(k)

O ∥F converges R-linearly with rate ∥M − ΠFix(M)∥op = 0.984. As
expected, the numerical rate from Figure 11 is also 0.984, which suggests the tightness of our theory.
More interestingly, the numerical rate of ∥H(k)

O ∥F and that of ∥H(k)∥F are exactly the same in this
example.
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8.3 Failure Cases
In Figure 12, we report some SDP instances for which ADMM fails to achieve rmax ≤ 10−10 within the stated
budget and no clear linear convergence is observed. A common feature in these instances is that the values
λmin (|Z⋆|) tend to be small (e.g., 10−4 ∼ 10−9), yet not exactly zero (compared to QS and BQP cases where
λmin (|Z⋆|) < 10−14). The near failure of strict complementarity may qualitatively explain the lack of linear
convergence. Recall from Theorem 2 that the refined error bound holds for “small” perturbation ∥H∥2≤ CEB,
which is proportional to min{λr,−λr+1}; see (46). Consequently, a small λmin (|Z⋆|) = min{λr,−λr+1}
enforces a tiny perturbation radius CEB. So, linear convergence of ADMM, if exists, must occur at a very
late stage. This observation also aligns with the recent findings in first-order methods for LP [40].

1dc-1024 cnhil10 neosfbr25

rose13 swissroll MAXCUT-G11

Figure 12: Cases from datasets [14, 42]. For these SDPs, ADMM fails to achieve rmax ≤ 10−10 within the
stated budget, and no clear linear convergence is observed.

9 Discussion: Rank Identification and Linear Convergence
First-order methods (e.g., PDHG) for LP (a special case of SDP) are known to have an intriguing two-stage
phenomenon [40]. The first stage identifies the basis and finishes in a finite number of iterations, with a
sublinear rate. Then, the second stage of the algorithm converges linearly, with a rate related to the local
sharpness constant. In view of the equivalence between ADMM and PDHG [45], as well as the similarity
between the numerical results in Section 8 and those in [40], it is natural to ask whether ADMM for SDP
has a similar two-stage performance and whether it could identify the solution rank (c.f., basis in LP) within
a finite number of iterations. This section aims to provide a partial answer to the above questions, both
theoretically and empirically.

Finite-time rank identification. In the context of ADMM for SDP, the fact that rank identification
occurs within a finite number of iterations is readily guaranteed by the well-known partial smoothness
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theory [18, 33, 60]. More precisely, rank identification means that ADMM identifies the rank of the solution
it converges to and all the subsequent ADMM iterates have the same rank. Here, we provide a more direct
proof in the context of SDP, without invoking the more general partial smoothness theory.

Proposition 3. Suppose that Assumptions 1 and 2 hold and that ADMM (2) converges to (X⋆, y⋆, S⋆).
Then, there exists k̄ID ∈ N such that for any integer k ≥ k̄ID, it holds that

rank(X(k)) = rank(X⋆), rank(S(k)) = rank(S⋆).

Proof. First, we show that

rank(ΠSn+(Z⋆ +H(k))) = rank(ΠSn+(Z⋆)) if ∥H(k)∥2 < min{λr,−λr+1}.

To see this, denote by γr and γr+1 the rth and (r+1)st largest eigenvalue of Z⋆ +H(k), respectively. Then,
by Weyl’s inequality, we have

γr ≥ λr − ∥H(k)∥2 > λr −min{λr,−λr+1} ≥ 0,

γr+1 ≤ λr+1 + ∥H(k)∥2 < λr+1 +min{λr,−λr+1} ≤ 0,

where recall λr and λr+1 are the rth and (r + 1)st largest eigenvalue of Z⋆, respectively. Thus, we have
γr > 0 > γr+1 and

rank(X(k)) = rank(ΠSn+(Z⋆ +H(k))) = r = rank(ΠSn+(Z⋆)).

The dual part follows in a symmetric manner:

rank(S(k)) = rank(ΠSn+(−Z⋆ −H(k))) = n− r = rank(ΠSn+(−Z⋆)).

Second, since ∥H(k)∥2 → 0 as k → ∞, there exists k̄ID ∈ N such that ∥H(k)∥2 < min{λr, λr+1}. This
concludes the proof.

On the relation between rank identification and linear convergence. Considering both rank iden-
tification and local linear convergence, it is natural to investigate the relationship of these two phenomena:
which one occurs first? Unlike the case of PDHG for LP, it remains unclear whether rank identification is
the trigger for linear convergence.

Here, we provide a simple example that to some extent explains the interaction between these two
phenomena. Recall from our analysis (specifically Lemma 6) that the R-linear convergence of ∥H(k)∥F is
built upon that of the two sequences

∥ΠTS⋆
(X(k))∥F = O(∥H(k)

O ∥F), ∥ΠTX⋆
(S(k))∥F = O(∥H(k)

O ∥F). (54)

In view of this, we build an SDP instance in which rank identification does not occur and (54) fails to hold.
So, in the worst case, (54) needs rank identification. If (54) were necessary for linear convergence, then we
could conclude that rank identification occurs no later than the final (R-)linear convergence regime.

Example 1. Consider the SDP (1) with n = 3. Suppose Assumption 1, primal nondegeneracy (8) and dual
nondegeneracy (9) hold. Suppose rank(X⋆) = 1 and rank(S⋆) = 2. (So Assumption 2 holds.) Suppose Z⋆ =
diag (1,−δ,−δ), where δ > 0 can be arbitrarily small. Then, Proposition 3 implies that rank identification
must occur if ∥H(k)∥2 < δ.

Assume, without loss of generality, that ADMM starts at the following points (with ϵ > 0)

X(0) =

1 0 0
0 ϵ

2
ϵ
2

0 ϵ
2

ϵ
2

 =

1 0
0
√

ϵ
2

0
√

ϵ
2

1 0
0
√

ϵ
2

0
√

ϵ
2

T

,

σS(0) =

0 0 0
0 δ + ϵ

2 −δ − ϵ
2

0 −δ − ϵ
2 δ + ϵ

2

 =

 0√
δ + ϵ

2

−
√
δ + ϵ

2

 0√
δ + ϵ

2

−
√
δ + ϵ

2

T

.
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hamming-11-2 XM-149 BQP-r1-30-3

BQP-r1-40-3 BQP-r2-40-2 Quasar-200

Figure 13: Six representative SDP instances illustrating rank identification: almost at the same time
when X(k) identifies the solution rank, ADMM steps into the final linear convergence region.

It is clear that rank(X(0)) = 1, rank(S(0)) = 2, ⟨X(0), S(0)⟩ = 0, and

H(0) = X(0) − σS(0) − Z⋆ =

0 0 0
0 0 δ + ϵ
0 δ + ϵ 0

 .
Moreover, ∥H(0)∥2 = δ + ϵ and H(0)

O = 0. On the other hand,

ΠTS⋆
(X(0)) =

0 0 0
0 ϵ

2
ϵ
2

0 ϵ
2

ϵ
2

 .
To conclude, rank identification does not occur and (54) fails to hold.

Numerical evidence. As shown in Figure 13, for many tested SDP instances, as soon as X(k) identifies
the solution rank, the ADMM iterates simultaneously steps into the final region of linear convergence.

In view of Proposition 3, Example 1 and Figure 13, one may already identify a gap between theory and
practice.

Open problems: In what type of SDPs is rank identification a necessary condition for (R-)linear
convergence? Under which conditions will rank identification and (R-)linear convergence occur
simultaneously?
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10 Conclusion
We established a new sufficient condition for the local linear convergence of the Alternating Direction Method
of Multipliers (ADMM) in solving semidefinite programming (SDP) problems. Contrary to the conventional
belief that ADMM is inherently slow for SDPs, we demonstrated that when the converged primal–dual
optimal solutions satisfy strict complementarity, ADMM exhibits local linear convergence, regardless of
nondegeneracy conditions. Our theoretical analysis is grounded in a direct local linearization of the ADMM
operator and a refined error bound for the projection onto the positive semidefinite cone, revealing the
anisotropic nature of projection residuals and improving previous bounds.

Extensive numerical experiments validated our theoretical findings, showing that ADMM achieves local
linear convergence across a variety of SDP instances, including those where nondegeneracy fails. Furthermore,
we identified cases where ADMM struggles to reach high accuracy, linking these difficulties to near violations
of strict complementarity. This observation aligns with recent results in linear programming.

Our numerical results also revealed intriguing connections between rank identification and linear con-
vergence. While we provided a qualitative analysis, a complete understanding remains open. Future work
could further investigate this relationship, examine whether linear convergence can occur in the absence of
both nondegeneracy and strict complementarity, and develop new algorithms to accelerate ADMM and other
first-order methods.
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Appendix A Discussion on [12, Proposition 3.4]
In this section, we show that [12, Proposition 3.4], under an additional nonsingularity assumption, can be
readily derived from Theorem 2. We first restate [12, Proposition 3.4] (with the nonsingularity assumption)
below.

Corollary 1. Let Z ∈ Sn being nonsingular and X,S ∈ Sn+ be defined as

Z :=

[
ΛX 0
0 ΛS

]
, X :=

[
ΛX 0
0 0

]
, S :=

[
0 0
0 −ΛS

]
,

where, without loss of generality, ΛX ∈ Rr×r
++ and ΛS ∈ Rs×s

++ are diagonal matrices of the form in (6), and
r + s = n. For a sufficiently small perturbation H ∈ Sn, define

X ′ := ΠSn+(Z +H), S′ := X ′ − (Z +H), ∆X := X ′ −X, ∆S := S′ − S.

Denote α := {1, 2, . . . , r} and γ := {r + 1, . . . , n}. Then, it holds that

X ′
αα = ΛX +O(∥∆X∥), S′

γγ = ΛS +O(∥∆S∥),
X ′

γα = O(min {∥∆X∥, ∥∆S∥}), S′
γα = O(min {∥∆X∥, ∥∆S∥}),

X ′
γγ = O(∥∆X∥ · ∥∆S∥), S′

αα = O(∥∆X∥ · ∥∆S∥),
S′
γαΛX − ΛSX

′
γα = O(∥∆X∥ · ∥∆S∥),

where ∥·∥ is an arbitrary matrix norm.

Proof. When ∥H∥ is sufficiently small, we conclude from Theorem 2 that there exists two positive constants
κX and κS (depending on the norm type) such that

∥∆X − Ω ◦H∥ =
∥∥∥∥[X ′

αα − ΛX −HX X ′
αγ −ΘT ◦HT

O

X ′
γα −Θ ◦HO X ′

γγ

]∥∥∥∥ ≤ κX · ∥HO∥ · ∥H∥,

∥∆S − (En − Ω) ◦H∥ =
∥∥∥∥[ S′

αα S′
αγ − (E(n−r)×r −Θ)T ◦HT

O

S′
γα − (E(n−r)×r −Θ) ◦HO S′

γγ − ΛS −HS

]∥∥∥∥
≤ κS · ∥HO∥ · ∥H∥.

Thus, there exist four positive constraints κ1, κ2, κ3, κ4 such that

κ1 · (∥HX∥+ ∥HO∥) ≤ ∥∆X∥ ≤ κ2 · (∥HX∥+ ∥HO∥) (55a)
κ3 · (∥HS∥+ ∥HO∥) ≤ ∥∆S∥ ≤ κ4 · (∥HS∥+ ∥HO∥). (55b)

We only prove the X part; the S part follows directly by symmetry.

1. Since X ′
αα − ΛX = (∆X)αα, the first conclusion X ′

αα = ΛX +O(∥∆X∥) naturally holds.

2. For X ′
γα, we have

∥X ′
γα −Θ ◦HO∥ ≤ κX · ∥HO∥ · ∥H∥, (56)

i.e., there exist κ5, κ6 > 0 such that κ5∥HO∥ ≤ ∥X ′
γα∥ ≤ κ6∥HO∥. From (55), we conclude X ′

γα =
O(min{∥∆X∥, ∥∆S∥}).

3. The norm of X ′
γγ is upper bounded by ∥X ′

γγ∥ ≤ κX∥HO∥∥H∥. On the other hand, we have

∥∆X∥ · ∥∆S∥ ≥ κ1κ3 · (∥HX∥+ ∥HO∥) · (∥HS∥+ ∥HO∥) ≥ κ7 · ∥HO∥ · ∥H∥

for some positive constant κ7.
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4. Note that

ΛS(Θ ◦HO) = (ΛSΘ) ◦HO =


−λ1λr+1

λ1−λr+1
· · · −λrλr+1

λr−λr+1

...
. . .

...
−λ1λn

λ1−λn
· · · −λrλn

λr−λn

 ◦HO

=
(
(E(n−r)×r −Θ)ΛX

)
◦HO

=
(
(E(n−r)×r −Θ) ◦HO

)
ΛX ,

where we use the fact that (AD) ◦B = B ◦ (AD) = (B ◦A)D for diagonal D. Then,

∥S′
γαΛX − ΛSX

′
γα∥

= ∥S′
γαΛX − ((E(n−r)×r −Θ) ◦HO)ΛX − (ΛSX

′
γα − ΛS(Θ ◦HO))∥

≤ ∥S′
γαΛX − ((E(n−r)×r −Θ) ◦HO)ΛX∥+ ∥ΛSX

′
γα − ΛS(Θ ◦HO)∥

≤ (κX + κS)κ8 · ∥HO∥ · ∥H∥

for some positive constant κ8. We conclude S′
γαΛX − ΛSX

′
γα = O(∥∆X∥∥∆S∥), following the same

argument as in item 3.

From the above proof procedure, we see that Theorem 2 provides a subtle and accurate control of the
linearization residual, especially the ∥HO∥ term. Otherwise, using the classic result in Lemma 1 only,
inequalities like (55) and (56) may not be derived in a straightforward manner.

Appendix B Local Linear Convergence with Nondegeneracy but
without SC

In this section, we establish the local linear convergence of ADMM applied to SDPs in which primal and
dual nondegeneracy hold but strict complementarity fails. That is to say, we consider the case where Z⋆ is
singular, i.e., s+ r < n. Again, we assume without loss of generality that Q⋆ = In in (6). We also need the
following index sets

α := {1, . . . , r} , β := {r + 1, . . . , n− s} , γ := {n− s+ 1, . . . , n} ,

and then any matrix H ∈ Sn can be partitioned as

H =

Hαα HT
βα HT

γα

Hβα Hββ HT
γβ

Hγα Hγβ Hγγ

 . (57)

When Z⋆ is singular, the projector ΠSn+(·) is no longer Fréchet differentiable around Z⋆ [54, Theorem 4.8].
However, its directional derivative always exists [54, Theorem 4.7].

Lemma 15 ( [54, Theorem 4.7]). The PSD cone projection ΠSn+(·) is directionally differentiable at Z⋆ and,
for any H ∈ Sn partitioned as in (57), its directional derivative at H is

Ω̃(H) :=

 Hαα HT
βα Θ̃T ◦HT

γα

Hβα ΠS|β|
+
(Hββ) 0

Θ̃ ◦Hγα 0 0

 ,
where |β| = n− r − s is the cardinality of the index set β and the matrix Θ̃ ∈ Rs×r is defined as

Θ̃i,j :=
λj

λj − λn−s+i
, for i ∈ [s], j ∈ [r]. (58)
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From the definition of the directional derivative, we have for sufficiently small H ∈ Sn that

ΠSn+(Z⋆ +H) = ΠSn+(Z⋆) + Ω̃(H) + o(∥H∥F). (59)

Recall our definition Θ⊥ := Es×r −Θ; similarly, we denote Ω̃⊥(H) as

Ω̃⊥(H) := H − Ω̃(H) =

 0 0 (Θ̃⊥)T ◦HT
γα

0 −ΠS|β|
+
(−Hββ) HT

γβ

Θ̃⊥ ◦Hγα Hγβ Hγγ

 ,
where we use the fact that Hββ = ΠS|β|

+
(Hββ) − ΠS|β|

+
(−Hββ). Similar to (16), we split one-step ADMM

operator into two parts:

Z(k+1) − Z⋆ = M̃(Z(k) − Z⋆) + Ψ̃(k),

where

M̃(H) := PΩ̃⊥(H) + P⊥Ω̃(H), (60)

Ψ̃(k) := (Id− 2P)(ΠSn+(Z
(k))−ΠSn+(Z⋆)− Ω̃(Z(k) − Z⋆))

= o(∥Z(k) − Z⋆∥F). (61)

Although M̃ is no longer a linear operator (because of ΠS|β|
+

in Ω̃), it is still positively homogenous. This is

because ΠS|β|
+

is positively homogenous and other parts of M̃ are linear. So we can still obtain the following
result similar to Lemma 2.

Lemma 16. For any matrix H ∈ Sn partitioned as in (57), it holds that〈
Ω̃(H), Ω̃⊥(H)

〉
= 2

〈
Θ̃ ◦Hγα, Θ̃

⊥ ◦Hγα

〉
≥ 0, (62)

with equality if and only if Hγα = 0, and that

∥H∥2F − ∥M̃(H)∥2F = ∥PΩ̃(H)∥2F + ∥P⊥Ω̃⊥(H)∥2F + 4
〈
Θ̃ ◦Hγα, Θ̃

⊥ ◦Hγα

〉
. (63)

Proof. From the definition of Θ̃ (58) and the partition of H (57), we see that〈
Ω̃(H), Ω̃⊥(H)

〉
=

〈 Hαα HT
βα Θ̃T ◦HT

γα

Hβα ΠS|β|
+
(Hββ) 0

Θ̃ ◦Hγα 0 0

 ,
 0 0 (Θ̃⊥)T ◦HT

γα

0 −ΠS|β|
+
(−Hββ) HT

γβ

Θ̃⊥ ◦Hγα Hγβ Hγγ

〉

= 2
〈
Θ̃ ◦Hγα, Θ̃

⊥ ◦Hγα

〉
≥ 0. (64)

where we already use the fact that ⟨ΠS|β|
+
(Hββ),ΠS|β|

+
(−Hββ)⟩ = 0. Since all the entries in Θ̃ and Θ̃⊥ are

strictly positive, the inner product (64) is zero if and only if Hγα = 0.
To show the second conclusion, we first decompose H as

H = P(Ω̃(H)) + P(Ω̃⊥(H)) + P⊥(Ω̃(H)) + P⊥(Ω̃⊥(H)).
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Then, we have

∥H∥2F = ∥P(Ω̃(H))∥2F + ∥P(Ω̃⊥(H))∥2F + ∥P⊥(Ω̃(H))∥2F + ∥P⊥(Ω̃⊥(H))∥2F
+ 2

〈
P(Ω̃(H)),P(Ω̃⊥(H))

〉
+ 2

〈
P⊥(Ω̃(H)),P⊥(Ω̃⊥(H))

〉
= ∥P(Ω̃(H))∥2F + ∥P(Ω̃⊥(H))∥2F + ∥P⊥(Ω̃(H))∥2F + ∥P⊥(Ω̃⊥(H))∥2F

+ 2
〈
Ω̃(H), Ω̃⊥(H)

〉
,

and

∥M̃(H)∥2F = ∥P⊥(Ω̃(H)) + P(Ω̃⊥(H))∥2F = ∥P⊥(Ω̃(H))∥2F + ∥P(Ω̃⊥(H))∥2F.

Combining both expressions with (64) gives the desirable result.

Theorem 5. Suppose Assumption 1, primal nondegeneracy (8) and dual nondegeneracy (9) hold. Define

ρND := sup
∥H∥F=1

∥M̃(H)∥F < 1

For any ρ ∈ (ρND, 1), there exists k̄ND ∈ N such that for any integer k ≥ k̄ND, it holds that

∥Z(k+1) − Z⋆∥F ≤ ρ∥Z(k) − Z⋆∥F.

Proof. First, we show that for any H ̸= 0, we have ∥M̃(H)∥F < ∥H∥F. To see this, suppose there exists a
matrix H ∈ Sn partitioned as in (57) such that ∥M̃(H)∥F ≥ ∥H∥F. Then, from Lemma 16, we see that

PΩ̃(H) = 0, P⊥Ω̃⊥(H) = 0, Hγα = 0.

From Hγα = 0 condition, we have

PΩ̃(H) = 0 ⇐⇒ P

Hαα HT
βα 0

Hβα ΠS|β|
+
(Hββ) 0

0 0 0

 = 0

⇐⇒

Hαα HT
βα 0

Hβα ΠS|β|
+
(Hββ) 0

0 0 0

 ∈ N (A) ∩NS⋆
.

On the other hand, dual nondegeneracy (9) implies N (A) ∩NS⋆
= {0}, and thus

Hαα = 0, Hβα = 0, ΠS|β|
+
(Hββ) = 0. (65)

Symmetrically, we have

P⊥Ω̃⊥(H) ⇐⇒ P⊥

0 0 0
0 −ΠS|β|

+
(−Hββ) HT

γβ

0 Hγβ Hγγ

 = 0

⇐⇒

0 0 0
0 −ΠS|β|

+
(−Hββ) HT

γβ

0 Hγβ Hγγ

 ∈ R(A∗) ∩NX⋆ .

On the other hand, primal nondegeneracy (8) implies R(A∗) ∩NX⋆
= {0}, and thus

Hγγ = 0, Hγβ = 0, ΠS|β|
+
(−Hββ) = 0. (66)
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Finally, combining (65), (66) together with Hγα = 0 induces H = 0.
Second, we show that ∥M̃(H)∥F/∥H∥F ≤ ρND < 1 for all H ̸= 0. Since ∥M̃(·)∥F is continuous and the

set {H | ∥H∥F = 1} is compact, we draw from Extreme Value Theorem that

ρND := sup
∥H∥F=1

∥M̃(H)∥F < 1.

On the other hand, because M̃ is positively homogenous, we have for any H ̸= 0 that

∥M̃(H)∥F
∥H∥F

= ∥M̃(H/∥H∥F)∥F ≤ sup
∥H′∥F=1

∥M̃(H ′)∥F < 1.

Third, we prove the locally linear decay of ∥Z(k) − Z⋆∥F. It follows from (61) that for any ρ ∈ (ρND, 1),
these exists k̄ND ∈ N such that for any k ≥ k̄ND, ∥Ψ̃(k)∥F ≤ (ρ− ρND)∥Z(k) − Z⋆∥F. Finally,

∥Z(k+1) − Z⋆∥F = ∥M̃(Z(k) − Z⋆) + Ψ̃(k)∥F
≤ ρND · ∥Z(k) − Z⋆∥F + ∥Ψ̃(k)∥F
≤ (ρND + ρ− ρND) · ∥Z(k) − Z⋆∥F
= ρ∥Z(k) − Z⋆∥F.

Appendix C Missing Materials in Section 6

C.1 Proof of Lemma 4
From one-step ADMM (4), we have

Z(k) − Z⋆ = −2PΠSn+(Z
(k)) + PZ(k) +ΠSn+(Z

(k)) +A†b− σP⊥C − Z(k)

= −2PX(k) +X(k) − P⊥Z(k) +A†b− σP⊥C

= −PX(k) + P⊥X(k) − P⊥(X(k) − σS(k)) +A†b− σP⊥C

= −PX(k) +A†b+ σP⊥(S(k) − C).

Since for any X̃ such that AX̃ = b,

PX̃ = A∗(AA∗)−1AX̃ = A∗(AA∗)−1b = A†b,

the equality (25) follows from the orthogonality between P and P⊥.
Now we prove the inequality (26). Let Z be an arbitrary point in Z⋆; i.e., Z may not be the convergent

point Z⋆ of ADMM. Define X := ΠSn+(Z) and S := (1/σ)ΠSn+(−Z). So,

P(ΠSn+(Z)− X̃) = 0, P⊥(ΠSn+(Z)− C) = 0

for any matrix X̃ ∈ Sn satisfying AX̃ = b. Then, we have

∥Z(k) − Z∥2F − ∥Z(k+1) − Z∥F
= ∥Z(k) − Z∥2F − ∥Z(k+1) − Z(k) + Z(k) − Z∥2F
= − 2⟨Z(k+1) − Z(k), Z(k) − Z⟩ − ∥Z(k+1) − Z(k)∥2F
= 2⟨P(X(k) −X)− σP⊥(S(k) − S), Z(k) − Z⋆⟩ − ∥Z(k+1) − Z(k)∥2F. (67)
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We further decompose Z(k) − Z as

Z(k) − Z
= X(k) − σS(k) − (X − σS)
= P(X(k) −X) + P⊥(X(k) −X)− σP⊥(S(k) − C)− σP⊥(S(k) − C).

Then the inner product term on the right-hand side of (67) becomes

⟨P(X(k) −X)− σP⊥(S(k) − S), Z(k) − Z⋆⟩
= ⟨P(X(k) −X)− σP⊥(S(k) − S),P(X(k) −X)− σP⊥(S(k) − C)⟩
− ⟨P(X(k) −X)− σP⊥(S(k) − S),P⊥(X(k) −X)− σP(S(k) − C)⟩

= ∥Z(k+1) − Z(k)∥2F − σ⟨P(X(k) −X),P⊥(P(S(k) − S))
− σ⟨P⊥(X(k) −X),P⊥(S(k) − S)⟩

= ∥Z(k+1) − Z(k)∥2F − σ⟨X(k) −X,S(k) − S⟩
= ∥Z(k+1) − Z(k)∥2F − σ⟨X(k), S⟩+ ⟨X,S(k)⟩
≥ ∥Z(k+1) − Z(k)∥2F,

where the last equality uses the fact that
〈
X,S

〉
= 0 and ⟨X(k), S(k)⟩ = 0. Combining with (67) yields

∥Z(k) − Z∥2F − ∥Z(k+1) − Z∥2F ≥ ∥Z(k+1) − Z(k)∥2F.

Now we choose Z as the closest point in Z⋆ to Z(k). Then, we have

dist2(Z(k),Z⋆) = ∥Z(k) − Z∥2F
≥ ∥Z(k+1) − Z(k)∥2F + ∥Z(k+1) − Z∥2F
≥ ∥Z(k+1) − Z(k)∥2F + dist2(Z(k+1),Z⋆).

C.2 Proof of Lemma 7
(1) First, we show that (X⋆, S⋆) is a KKT point for (1) if and only if

P(X⋆ − X̃) = 0, P⊥(S⋆ − C) = 0, ⟨X⋆, C⟩+ ⟨X̃, S⋆⟩ − ⟨X̃, C⟩ = 0, X ∈ Sn+, S ∈ Sn+,

where X̃ ∈ Sn is an arbitrary matrix satisfying AX̃ = b.

• If AX⋆ = b, then P(X⋆ − X̃) = A†A(X⋆ − X̃) = A†(b − b) = 0. The converse holds because A is
surjective and thus AA† = Id. Together with X⋆ ∈ Sn+, it gives primal feasibility.

• Similarly, we note that P⊥(S⋆ − C) = 0 is equivalent to S⋆ − C ∈ R(A∗), which is further equivalent
to A∗y + S = C for some y ∈ Rm. Together with S⋆ ∈ Sn+, this gives dual feasibility.

• The third condition implies zero duality gap:

⟨X⋆, C⟩ − bTy⋆ = 0 ⇐⇒ ⟨X⋆, C⟩+
〈
b, (A∗)†(S⋆ − C)

〉
= 0

⇐⇒ ⟨X⋆, C⟩+ ⟨A†b, S⋆⟩ − ⟨A†b, C⟩ = 0

⇐⇒ ⟨X⋆, C⟩+ ⟨X̃, S⋆⟩ − ⟨X̃, C⟩ = 0.

For notational convenience, we define

FX := {(X,σS) | P(X − X̃) = 0}, FZ := {(X,σS) | P⊥(S − C) = 0},
RX := {(X,σS) | ΠTS⋆

(X) = 0}, RS := {(X,σS) | ΠTX⋆
(σS) = 0},

Fgap := {(X,σS) | ⟨X⋆, σC⟩+ ⟨X̃, σS⋆⟩ − ⟨X̃, σC⟩ = 0},
F := FX ∩ FS ∩ Fgap, R := RX ∩RS .
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(Note that the choice of X̃ does not matter in FX , as long as AX̃ = b.)
(2) Second, we show that X⋆ ∩ (σS⋆) = F ∩ (Sn+ × Sn+) = F ∩ (Sn+ × Sn+) × R. To see this, we choose

any pair of optimal solutions (X,σS) ∈ X⋆ × (σS⋆) and write down the complementary slackness condition:
⟨X,σS⋆⟩ = 0 and ⟨X⋆, σS⟩ = 0. Combined with the facts that X ∈ Sn+ and σS ∈ Sn+, we have

X ∈ minface
(
X⋆,Sn+

)
= Sn+ ×NS⋆

, σS ∈ minface
(
σS⋆,Sn+

)
= Sn+ ∩NX⋆

.

Thus, ΠTS⋆
(X) = 0 and ΠTX⋆

(σS) = 0, which directly implies (X,σS) ∈ RX ∩RS = R.
(3) Third, we project an arbitrary (X,σS) ∈ Sn×Sn to the regularized linear system F∩R. By Hoffman’s

error bound [26], there exists κ0 > 0 such that

κ0 · dist((X,σS),F ∩R)
≤ dist((X,σS),FX) + dist((X,σS),FS) + dist((X,σS),Fgap)

+ dist((X,σS),RX) + dist((X,σS),RS), (68)

where

dist((X,σS),FX) = ∥P(X − X̃)∥F, dist((X,σS),FZ) = σ∥P⊥(S − C)∥F
dist((X,σS),RX) = ∥ΠTS⋆

(X)∥F, dist((X,σS),RS) = σ∥ΠTX⋆
(S)∥F,

dist((X,σS),Fgap) =
σ√

σ2∥C∥2F + ∥A†b∥2F
|⟨X⋆, C⟩+ ⟨X̃, S⋆⟩ − ⟨X̃, C⟩|.

(4) Fourth, we explicitly construct a point belonging to X⋆ × (σS⋆). Take

β := max

{
1

λr
· ([−λmin (X)]+ + ∥ZX∥2) ,

1

−λr+1
· ([−λmin (σS)]+ + ∥ZS∥2)

}
and define (ZX , ZS) := (X,σS)−ΠF∩R(X,σS). Thus, by definition√

∥ZX∥2F + ∥ZS∥2F = dist((X,σS),F ∩R).

Then, consider the point (X,σS)− (ZX , ZS) + β · (X⋆, σS⋆). For the primal part:

λmin ((X − ZX + β ·X⋆)1:r,1:r)

≥ β · λmin ((X⋆)1:r,1:r) + λmin ((X − ZX)1:r,1:r) (69a)
= βλr +min {λmin (X − ZX) , 0} (69b)
≥ βλr +min {λmin (X)− ∥ZX∥2, 0} (69c)

≥ 1

λr
([−λmin (X)]+ + ∥ZX∥2) · λr +min {λmin (X)− ∥ZX∥2, 0}

≥ 0,

where (69a) and (69c) come form Weyl’s inequality, (69b) holds since X −ZX ∈ NS⋆
. Combining the above

inequality with the facts taht X⋆ ∈ NS⋆
and X − ZX ∈ NS⋆

gives

λmin (X − ZX + βX⋆) = min {λmin ((X − ZX + βX⋆)1:r,1:r) , 0} ≥ 0.

Symmetrically, λmin (σS − ZS + βσS⋆) ≥ 0. Therefore, (X − ZX + βX⋆, σS − ZS + βσS⋆) ∈ Sn+ × Sn+.
Combining the fact that both (X − ZX , σS − ZS) and (X⋆, σS⋆) belong to F ∩R, we conclude that

1

1 + β
· (X − ZX + βX⋆, σS − ZS + βσS⋆) ∈ F ∩R ∩ (Sn+ × Sn+) = X⋆ ∩ (σS⋆).
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(5) Finally, we upper bound the distance from (X,σS) to X⋆ ∩ (σS⋆) by

dist((X,σS),X⋆ × σS⋆)

≤
∥∥∥∥(X,σS)− 1

1 + β
· (X − ZX + βX⋆, σS − ZS + βσS⋆)

∥∥∥∥
F×F

=

√∥∥∥∥X − 1

1 + β
(X − ZX + βX⋆)

∥∥∥∥2
F

+

∥∥∥∥σS − 1

1 + β
(σS − ZS + βσS⋆)

∥∥∥∥2
F

=
√
2

∥∥∥∥X − 1

1 + β
(X − ZX + βX⋆)

∥∥∥∥
F

+
√
2

∥∥∥∥σS − 1

1 + β
(σS − ZS + βσS⋆)

∥∥∥∥
F

. (70)

To bound the first term on the right-hand side, we have∥∥∥∥X − 1

1 + β
· (X − ZX + βX⋆)

∥∥∥∥
F

=

∥∥∥∥ 1

1 + β
· (β ·X − ZX + βX⋆)

∥∥∥∥
F

≤ 1

1 + β
· (∥βX∥F + ∥ZX∥F + ∥βX⋆∥F)

≤ β∥X∥F + ∥ZX∥F + β∥X⋆∥F
≤ (δX + λ1)β + ∥ZX∥F. (71)

Similarly, we have ∥∥∥∥σS − 1

1 + β
· (σS − ZS + βσS⋆)

∥∥∥∥
F

≤ (δS − λn)β + ∥ZS∥F. (72)

Combining (70)–(72) gives

dist((X,σS),X⋆ × (σS⋆))
≤ ∥ZX∥F + ∥ZS∥F + (δX + δS + λ1 − λn)β

≤
√
2(∥ZX∥2F + ∥ZS∥2F) + (δX + δS + λ1 − λn)

·max

{
1

λr
· ([−λmin (X)]+ + ∥ZX∥2) ,

1

−λr+1
· ([−λmin (σS)]+∥ZS∥2)

}
≤
√

2(∥ZX∥2F + ∥ZS∥2F) + (δX + δS + λ1 − λn) ·max

{
1

λr
,

1

−λr+1

}
· ([−λmin (X)]+ + ∥ZX∥2 + [−λmin (σS)]+ + ∥ZS∥2)

≤ κ1 · ([−λmin (X)]+ + [−λmin (σS)]+) + κ2 ·
√
∥ZX∥2F + ∥ZS∥2F

≤ κ1 · ([−λmin (X)]+ + [−λmin (σS)]+) + κ2 · dist((X,σS),F ∩R), (73)

where
κ1 := (δX + δS + λ1 − λn) ·max

{
1

λr
,

1

−λr+1

}
, κ2 := κ1 +

√
2.

Therefore, combining (68) and (73) yields the desirable result with

κ =

(
κ1 +

κ2
κ0
·

(
1 +

1√
σ2∥C∥2F + ∥A†b∥2F

))−1

.

Appendix D Missing Materials in Section 7

D.1 Proof of Lemma 9
The proof of Lemma 9 needs the following two auxiliary lemmas.
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Lemma 17. Let S ∈ Sn satisfy ∥S∥2 ≤ 3
4 and define ψ(S) := exp(S)− I − S. Then, it holds that

∥ψ(S)∥2 ≤
2

3
∥S∥22.

Proof. From the definition of ψ, we have

ψ(S) = exp(S)− I − S =

∞∑
k=2

1

k!
Sk,

and then

∥ψ(S)∥2 ≤
∞∑
k=2

1

k!
∥S∥k2 =

1

2
∥S∥22 ·

∞∑
k=0

2

(k + 2)!
∥S∥k2 ≤

1

2
∥S∥22 ·

∞∑
k=0

(
1

3

)k

∥S∥k2

=
1

2
∥S∥22 ·

1

1− 1
3∥S∥2

,

where the last inequality uses the fact that 2
n! ≤

(
1
3

)n−2 for all n ≥ 3. Finally, we conclude from the
assumption that ∥S∥2 ≤ 3

4 :

∥ψ(S)∥2 ≤
1

2
∥S∥22 ·

4

3
=

2

3
∥S∥22.

Lemma 18. Let X ∈ Sn be partitioned as

X =

[
A BT

B C

]
∈ Sn.

Then, it holds that
max{∥A∥2, ∥B∥2, ∥C∥2} ≤ ∥X∥2 ≤ ∥A∥2 + ∥B∥2 + ∥C∥2.

Proof. On one hand, we have

∥X∥2 = sup
∥x∥2

2+∥y∥2
2=1

∥∥∥∥[A BT

B C

] [
x
y

]∥∥∥∥
2

≥ sup
∥x∥2

2=1

∥∥∥∥[A BT

B C

] [
x
0

]∥∥∥∥
2

= sup
∥x∥2

2=1

∥∥∥∥[AxBx
]∥∥∥∥

2

,

and then
∥X∥2 ≥ sup

∥x∥2
2=1

∥Ax∥2 = ∥A∥2, ∥X∥2 ≥ sup
∥x∥2

2=1

∥Bx∥2 = ∥B∥2.

Similarly, ∥X∥2 ≤ ∥C∥2.
On the other hand, we see that

∥X∥2 ≤
∥∥∥∥[A 0

0 0

]∥∥∥∥
2

+

∥∥∥∥[0 0
0 C

]∥∥∥∥
2

+

∥∥∥∥[ 0 BT

B 0

]∥∥∥∥
2

= ∥A∥2 + ∥C∥2 +
∥∥∥∥[ 0 BT

B 0

]∥∥∥∥
2

= ∥A∥2 + ∥C∥2 + ∥B∥2.

Now we are ready to prove Lemma 9.
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Proof of Lemma 9. Since ZX,ℓ ∈ Sn++ and ZS,ℓ ∈ Sn−−, the Sylvester equation (36) has a unique solution
with

vec(WO,ℓ) = (Ir ⊗ (−ZS,ℓ) + ZX,ℓ ⊗ In−r)
−1 vec(ZO,ℓ)

= ((−ZS,ℓ)⊕ ZX,ℓ)
−1 vec(ZO,ℓ)

From [52, Theorem 2.5], we see that the eigenvalues of (−ZS,ℓ) ⊕ ZX,ℓ equal to the sum of the eigenvalues
of −ZS,ℓ and ZX,ℓ. Thus, (−ZS,ℓ)⊕ ZX,ℓ is positive definite and

∥vec(WO,ℓ)∥2 ≤
1

λmin ((−ZS,ℓ)⊕ ZX,ℓ)
· ∥vec(ZO,ℓ)∥2

=
1

λmin (ZX,ℓ)− λmax (ZS,ℓ)
· ∥vec(ZO,ℓ)∥2.

Therefore, we can upper bound ∥WO,ℓ∥2 and ∥Wℓ∥2 by ∥ZO,ℓ∥2:

∥WO,ℓ∥2 ≤ ∥WO,ℓ∥F = ∥vec(WO,ℓ)∥2 ≤
d

λmin (ZX,ℓ)− λmax (ZS,ℓ)
· ∥ZO,ℓ∥2 = ηℓ · ∥ZO,ℓ∥2 (74)

and

∥Wℓ∥2 =

∥∥∥∥[ 0 −WT
O,ℓ

WO,ℓ 0

]∥∥∥∥
2

= ∥WO,ℓ∥2 ≤ ηℓ · ∥ZO,ℓ∥2 (75)

In addition, we have[
Ir WT

O,ℓ

−WO,ℓ In−r

] [
ZX,ℓ ZT

O,ℓ

ZO,ℓ ZS,ℓ

] [
Ir −WT

O,ℓ

WO,ℓ In−r

]
=

[
QX QT

O

QO QS

]
, where Wℓ =

[
0 −WT

O,ℓ

WO,ℓ 0

]
and

QX = ZX,ℓ +WT
O,ℓZO,ℓ + ZT

O,ℓWO,ℓ +WT
O,ℓZS,ℓWO,ℓ

QS =WO,ℓZX,ℓW
T
O,ℓ − ZO,ℓW

T
O,ℓ −WO,ℓZ

T
O,ℓ + ZS,ℓ

QO = −WO,ℓZX,ℓ + ZO,ℓ −WO,ℓZ
T
O,ℓWO,ℓ + ZS,ℓWO,ℓ.

From the definition of WO,ℓ (36), we further have QO = −WO,ℓZ
T
O,ℓWO,ℓ.

Now, we are ready to bound the following spectral norm:∥∥∥∥[ZX,ℓ+1 − ZX,ℓ ZT
O,ℓ+1

ZO,ℓ+1 ZS,ℓ+1 − ZS,ℓ

]∥∥∥∥
2

=

∥∥∥∥exp(Wℓ)
T

[
ZX,ℓ ZT

O,ℓ

ZO,ℓ ZS,ℓ

]
exp(Wℓ)−

[
ZX,ℓ 0
0 ZS,ℓ

]∥∥∥∥
2

≤
∥∥∥∥(I +Wℓ)

T

[
ZX,ℓ ZT

O,ℓ

ZO,ℓ ZS,ℓ

]
(I +Wℓ)−

[
ZX,ℓ 0
0 ZS,ℓ

]∥∥∥∥
2

+

∥∥∥∥exp(Wℓ)
T

[
ZX,ℓ ZT

O,ℓ

ZO,ℓ ZS,ℓ

]
exp(Wℓ)− (I +Wℓ)

T

[
ZX,ℓ ZT

O,ℓ

ZO,ℓ ZS,ℓ

]
(I +Wℓ)

∥∥∥∥
2

. (76)

We then bound the two terms on right-hand side of (76) one-by-one.
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1. By definition, we have∥∥∥∥(I +Wℓ)
T

[
ZX,ℓ ZT

O,ℓ

ZO,ℓ ZS,ℓ

]
(I +Wℓ)−

[
ZX,ℓ 0
0 ZS,ℓ

]∥∥∥∥
2

=

∥∥∥∥[QX − ZX,ℓ QT
O

QO QS −QS,ℓ

]∥∥∥∥
2

≤ ∥QS − ZX,ℓ∥2 + ∥QO∥2 + ∥QS − ZS,ℓ∥2
= ∥WT

O,ℓZO,ℓ + ZT
O,ℓWO,ℓ +WT

O,ℓZS,ℓWO,ℓ∥2 + ∥WO,ℓZ
T
O,ℓWO,ℓ∥2

+ ∥WO,ℓZX,ℓW
T
O,ℓ − ZO,ℓW

T
O,ℓ −WO,ℓZ

T
O,ℓ∥2, (77)

where the inequality follows from Lemma 18. We can further bound the three terms on the right-hand
side of (77) one-by-one.

(a) For the first term, we have from (74) that

∥WT
O,ℓZO,ℓ + ZT

O,ℓWO,ℓ +WT
O,ℓZS,ℓWO,ℓ∥2

≤ 2∥WO,ℓ∥2 · ∥ZO,ℓ∥2 + ∥WO,ℓ∥22 · ∥ZS,ℓ∥2
≤ 2ηℓ · ∥ZO,ℓ∥22 + η2ℓ · ∥ZS,ℓ∥2 · ∥ZO,ℓ∥22
≤ 2ηℓ · ∥ZO,ℓ∥22 + η2ℓ · ∥Zℓ∥2 · ∥ZO,ℓ∥22. (78)

(b) For the second term, we obtain from (74) that

∥WO,ℓZ
T
O,ℓWO,ℓ∥2 ≤ η2ℓ · ∥ZO,ℓ∥32 ≤ η2ℓ · ∥Zℓ∥2 · ∥ZO,ℓ∥22. (79)

(c) Again from (74), we have

∥WO,ℓZX,ℓW
T
O,ℓ − ZO,ℓW

T
O,ℓ −WO,ℓZ

T
O,ℓ∥2 ≤ 2ηℓ · ∥ZO,ℓ∥22 + η2ℓ · ∥Zℓ∥2 · ∥ZO,ℓ∥22. (80)

2. Similarly, the second term on the right-hand side of (76) can be bounded as

∥exp(Wℓ)
TZℓ exp(Wℓ)− (I +Wℓ)

TZℓ(I +Wℓ)∥2
≤ 2∥exp(Wℓ)− In −Wℓ∥2 · ∥Zℓ∥2 · ∥In +Wℓ∥2 + ∥exp(Wℓ)− In −Wℓ∥22 · ∥Zℓ∥2. (81)

Again, we bound the two terms on the right-hand side one-by-one.

(a) We see from Lemma 17 and (75) that

∥exp(Wℓ)− In −Wℓ∥2 · ∥Zℓ∥2 · ∥In +Wℓ∥2

≤ 2

3
· ∥Wℓ∥22 · ∥Zℓ∥2 · ∥In +Wℓ∥2

≤ 2

3
· ∥Wℓ∥22 · ∥Zℓ∥2 · (1 + ∥Wℓ∥2)

≤ 2

3
η2ℓ · ∥ZO,ℓ∥22 · ∥Zℓ∥2 · (1 + ηℓ∥ZO,ℓ∥2)

≤ 2

3
η2ℓ · ∥Zℓ∥2 · ∥ZO,ℓ∥22 +

2

3
η3ℓ · ∥Zℓ∥22 · ∥ZO,ℓ∥22. (82)

(b) The second term on the right-hand side of (81) can be readily bounded by

∥exp(Wℓ)− In −Wℓ∥22 · ∥Zℓ∥2 ≤
4

9
· ∥Wℓ∥42 · ∥Zℓ∥2 ≤

4

9
η4ℓ · ∥Zℓ∥32 · ∥ZO,ℓ∥22. (83)
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Then, combining Lemma 18 and (76)–(83) yields

max{∥ZX,ℓ+1 − ZX,ℓ∥2, ∥ZS,ℓ+1 − ZS,ℓ∥2, ∥ZO,ℓ+1∥2}

≤
∥∥∥∥[ZX,ℓ+1 − ZX,ℓ ZT

O,ℓ+1

ZO,ℓ+1 ZS,ℓ+1 − ZS,ℓ

]∥∥∥∥
2

≤
(
4ηℓ + 2η2ℓ · ∥Zℓ∥2 + η2ℓ · ∥Zℓ∥2 +

4

3
η2ℓ · ∥Zℓ∥2 +

4

3
η3ℓ · ∥Zℓ∥22 +

4

9
η4ℓ · ∥Zℓ∥32

)
· ∥ZO,ℓ∥2

=

(
4

9
η4ℓ · ∥Zℓ∥32 +

4

3
η3ℓ · ∥Zℓ∥22 +

13

3
η2ℓ · ∥Zℓ∥2 + 4ηℓ

)
· ∥ZO,ℓ∥22. (84)

Finally, notice that Wℓ is skew-symmetric and exp(Wℓ) is orthogonal. Thus, the eigenvalues of Zℓ remain
the same for all ℓ ∈ N, so ∥Zℓ∥2 = ∥Z0∥2 for all ℓ ∈ N. Therefore, replacing ∥Zℓ∥2 with ∥Z0∥2 in (84) gives
the desirable result.

D.2 Proof of Lemma 10
A strengthened version. Here we prove a strenthened version of (43):

∥ZO,ℓ∥2 ≤
1

∥Z0∥2
· f(η0 · ∥Z0∥2) · ∥ZO,0∥ℓ+1

2 (85a)

∥ZX,ℓ − ZX,0∥2 ≤
1

∥Z0∥2
· f(η0 · ∥Z0∥2) ·

ℓ−1∑
i=0

∥ZO,0∥i+2
2 (85b)

∥ZS,ℓ − ZS,0∥2 ≤
1

∥Z0∥2
· f(η0 · ∥Z0∥2) ·

ℓ−1∑
i=0

∥ZO,0∥i+2
2 . (85c)

More specifically, (85) implies (43) because

1

∥Z0∥2
· f(η0 · ∥Z0∥2) ≤

1

∥ZX,0∥2
· f(η0 · (∥ZX,0∥2 + ∥ZS,0∥2 + CK))

≤ 1

∥ZX,0∥2
· f(η0 · (∥ZX,0∥2 + ∥ZS,0∥2 +

1

2
)) = αK ,

following from the monotonicity of f , Lemma 18, and the definition of CK (42): ∥ZO,0∥2 ≤ CK ≤ 1
2 .

Proof by induction. Now we prove (85) by induction.

1. Base case. When ℓ = 1, we see from ∥ZO,0∥2 ≤ CK ≤ 3
4η0

and Lemma 9 that

max{∥ZX,1 − ZX,0∥2, ∥ZS,1 − ZS,0∥2, ∥ZO,1∥2}

≤ 1

∥Z0∥2

(
4

9
(η0∥Z0∥2)4 +

4

3
(η0∥Z0∥2)3 +

13

3
(η0∥Z0∥2)2 + 4(η0∥Z0∥2)

)
∥ZO,0∥22

≤ 1

∥Z0∥2
f(η0 · ∥Z0∥2) · ∥ZO,0∥22.

2. Induction. Suppose (85) holds for index ℓ. The proof for the induction case ℓ + 1 takes the following
three steps.
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(a) First, (85b) implies that

λmin (ZX,ℓ) ≥ λmin (ZX,0) + λmin (ZX,ℓ − ZX,0) (86a)
≥ λmin (ZX,0)− ∥ZX,ℓ − ZX,0∥2

≥ λmin (ZX,0)−
f(η0 · ∥Z0∥2)
∥Z0∥2

·
ℓ−1∑
i=0

∥ZO,0∥i+2
2 (86b)

≥ λmin (ZX,0)−
f(η0 · ∥Z0∥2)
∥Z0∥2

· ∥ZO,0∥22
1− ∥ZO,0∥2

≥ λmin (ZX,0)−
f(η0 · ∥Z0∥2)
∥Z0∥2

· 1

αK
·

1
4λmin (ZX,0)

1− 1
2

(86c)

≥ λmin (ZX,0)−
1

2
λmin (ZX,0) (86d)

=
1

2
λmin (ZX,0) , (86e)

where (86a) comes from Weyl’s inequality, (86b) holds by the induction hypothesis, (86c) follows
from the definition of CK :

∥ZO,0∥2 ≤ CK ≤
1

2
, ∥ZO,0∥2 ≤ CK ≤

√
1

4αK
λmin (ZX,0),

and (86d) holds since αK ≥ 1
∥Z0∥2

· f(η0∥Z0∥2). Similarly, we obtain

λmin (ZX,ℓ) ≤ λmin (ZX,0) + λmax (ZX,ℓ − ZX,0)

≤ λmin (ZX,0) + ∥ZX,ℓ − ZX,0∥2

≤ 3

2
λmin (ZX,0) ,

and
3

2
λmax (ZS,0) ≤ λmax (ZS,0) ≤

1

2
λmax (ZS,0) .

Rearranging to get

λmin (ZX,ℓ)− λmax (ZS,ℓ) ≥
1

2
(λmin (ZX,0)− λmax (ZS,0) )

λmin (ZX,ℓ)− λmax (ZS,ℓ) ≤
3

2
(λmin (ZX,0)− λmax (ZS,0) ),

or equivalently,
2

3
η0 ≤ ηℓ ≤ 2η0. (87)

(b) Second, we show (85a) for index ℓ+ 1:

∥ZO,ℓ+1∥2 ≤
f(ηℓ · ∥Z0∥2)
∥Z0∥2

· ∥ZO,ℓ∥22 (88a)

≤ f(2η0 · ∥Z0∥2)
∥Z0∥2

· ∥ZO,ℓ∥22 (88b)

≤ f(2η0 · ∥Z0∥2)
∥Z0∥2

· f(η0 · ∥Z0∥2)2

∥Z0∥22
· ∥ZO,0∥2ℓ+2

2 , (88c)
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In (88a), we use Lemma 9, the fact ZX,ℓ ∈ Sr++ and ZS,ℓ ∈ Sn−r
−− from (a), and the fact that for

any integer ℓ ≥ 1, we have

ηℓ∥ZO,ℓ∥2 ≤ 2η0αK∥ZO,0∥ℓ+1
2 ≤ 2η0αK∥ZO,0∥22 ≤

3

4
(89)

since ∥ZO,0∥2 ≤ CK ≤ min{ 12 ,
1√

4η0αK
}. Then, (88b) uses (87), and (88c) uses the induction

hypothesis.
On the other hand, we see from the definition of CK that

∥ZO,0∥2 ≤ CK ≤ g−1(∥ZX,0∥22)
⇐⇒ ∥ZO,0∥2 · f (2η0(∥ZX,0∥2 + ∥ZS,0∥2 + ∥ZO,0∥2))

· f(η0(∥ZX,0∥2 + ∥ZS,0∥2 + ∥ZO,0∥2)) ≤ ∥ZX,0∥22 (90a)

=⇒ ∥ZO,0∥2 · f (2η0∥Z0∥2) · f (η0∥Z0∥2) ≤ ∥ZX,0∥22 (90b)

=⇒ ∥ZO,0∥2 · f(2η0∥Z0∥2) · f(η0∥Z0∥2) ≤ ∥Z0∥22

⇐⇒ ∥ZO,0∥ℓ+3
2 · f(2η0∥Z0∥2)

∥Z0∥2
· f(η0∥Z0∥2)2

∥Z0∥22
≤ f(η0∥Z0∥2)

∥Z0∥2
· ∥ZO,0∥ℓ+2

2

=⇒ ∥ZO,0∥2ℓ+2
2 · f(2η0∥Z0∥2)

∥Z0∥2
· f(η0∥Z0∥2)2

∥Z0∥22
≤ f(η0∥Z0∥2)

∥Z0∥2
· ∥ZO,0∥ℓ+2

2 , (90c)

where (90a) follows from the monotonicity of g, (90b) from that of f , (90c) uses the definition of
CK (so ∥ZO,0∥2 ≤ CK ≤ 1

2 < 1) and the fact 2ℓ+ 2 ≥ ℓ+ 3. Thus,

∥ZO,ℓ+1∥2 ≤
f(η0∥Z0∥2)
∥Z0∥2

· ∥ZO,0∥ℓ+2
2 .

(c) It remains to prove (85b) and (85c) for index ℓ+ 1. From Lemma 9 and (85a), we have

∥ZX,ℓ+1 − ZX,0∥2
≤ ∥ZX,ℓ+1 − ZX,ℓ∥2 + ∥ZX,ℓ − ZX,0∥2

≤ f(ηℓ · ∥Z0∥2)
∥Z0∥2

· ∥ZO,ℓ∥22 +
f(η0 · ∥Z0∥2)
∥Z0∥2

·

(
ℓ−1∑
i=0

∥ZO,0∥i+2
2

)

≤ f(2η0 · ∥Z0∥2)
∥Z0∥2

· ∥ZO,ℓ∥22 +
f(η0 · ∥Z0∥2)
∥Z0∥2

·

(
ℓ−1∑
i=0

∥ZO,0∥i+2
2

)

≤ f(2η0∥Z0∥2)
∥Z0∥2

f(η0∥Z0∥2)2

∥Z0∥22
· ∥ZO,0∥2ℓ+2

2 +
f(η0∥Z0∥2)
∥Z0∥2

(
ℓ−1∑
i=0

∥ZO,0∥i+2
2

)

≤ f(η0 · ∥Z0∥2)
∥Z0∥2

· ∥ZO,0∥ℓ+2
2 +

f(η0 · ∥Z0∥2)
∥Z0∥2

·

(
ℓ−1∑
i=0

∥ZO,0∥i+2
2

)

=
f(η0 · ∥Z0∥2)
∥Z0∥2

·

(
ℓ∑

i=0

∥ZO,0∥i+2
2

)
,

where the last inequality follows from (90c).

So we finish the proof of the strengthened inequalities (85), which implies (43). From the above mathematical
induction process, we can also conclude that

2

3
η0 ≤ ηℓ ≤ 2η0, λmin (ZX,ℓ) ≥

1

2
λmin (ZX,0) > 0 λmax (ZS,ℓ) ≤

1

2
λmax (ZS,0) < 0,

which follows directly from (86d) and (87).
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D.3 Proof of Lemma 11
First of all, we have

∥Wℓ∥2 = ∥WO,ℓ∥2
(a)
≤ ηℓ∥ZO,ℓ∥2 ≤ 2η0∥ZO,ℓ∥2

(b)
≤ 2η0αK∥ZO,0∥ℓ+1

2

(c)
≤ 1

2
, (91)

where step (a) follows from (75), step (b) holds since ZO,0 ≤ min{CK ,
1√

4η0αK
} for any integer ℓ ≥ 1, and

step (c) holds for the same reason as in (88a). Then, we see that

∥Qℓ+1 −Qℓ∥2 = ∥Qℓ (exp(Wℓ)− In)∥2
≤ ∥Qℓ∥2 · ∥exp(Wℓ)− In∥2
≤ ∥exp(Wℓ)− In∥2 (92a)
≤ ∥exp(Wℓ)− (In +Wℓ)∥2 + ∥Wℓ∥2

≤ 2

3
∥Wℓ∥22 + ∥Wℓ∥2 ≤

4

3
∥Wℓ∥2 (92b)

≤ 4

3
ηℓ∥ZO,ℓ∥2 ≤

8

3
η0∥ZO,ℓ∥2

≤ 8

3
η0αK · ∥ZO,0∥ℓ+1

2 ,

where (92a) holds because Qℓ =
∏ℓ

i=1 exp(Wi) is orthogonal, (92b) uses Lemma 17 and (91).
For the second inequality in the lemma, we have

∥Qℓ − (In +W0)∥2 =

∥∥∥∥∥Q1 − (In +W0) +

ℓ−1∑
i=1

(Qi+1 −Qi)

∥∥∥∥∥
2

≤ ∥Q1 − (In +W0)∥2 +
ℓ−1∑
i=1

∥Qi+1 −Qi∥2

≤ 2

3
∥W0∥22 +

8

3
η0αK

ℓ−1∑
i=1

∥ZO,0∥i+1
2 (93a)

≤ 2

3
η20∥ZO,0∥22 +

8

3
η0αK

ℓ−1∑
i=1

∥ZO,0∥i+1
2 , (93b)

where (93a) holds because of ηℓ∥ZO,ℓ∥2 ≤ 3
4 for all ℓ ∈ N from (89) and (44), and (93b) follows from (75).

D.4 Proof of Lemma 12
We first prove that the limit V∞ := limℓ→∞ Vℓ exists. From Lemma 10, we already know that ZO,ℓ → 0 as
ℓ→∞. It remains to show that ZX,ℓ and ZS,ℓ are also convergent. For any ϵ > 0, we define

N :=

⌈
1

2
log∥ZO,0∥2

(
ϵ

β
(1− ∥ZO,0∥2)

)
− 1

⌉
, where β = α2

Kf(2η0∥Z0∥2).
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Then, for any integers m,n ≥ N , we have

∥ZX,n − ZX,m∥2

≤
n−1∑
ℓ=m

∥ZX,ℓ+1 − ZX,ℓ∥2

≤
n−1∑
ℓ=m

1

∥Z0∥2
· f(ηℓ · ∥Z0∥2) · ∥ZO,ℓ∥22 (94a)

≤
n−1∑
ℓ=m

f(2η0 · (∥ZX,0∥2 + ∥ZS,0∥2 + 0.5))

∥ZX,0∥2
· ∥ZO,ℓ∥22 (94b)

≤
n−1∑
ℓ=m

f(2η0 · (∥ZX,0∥2 + ∥ZS,0∥2 + 0.5))

∥ZX,0∥2
· α2

K · ∥ZO,0∥2ℓ+2
2 (94c)

≤
∞∑

ℓ=m

β · ∥ZO,0∥2ℓ+2
2 ≤ β · ∥ZO,0∥2m+2

2

1− ∥ZO,0∥2
≤ β · ∥ZO,0∥2N+2

2

1− ∥ZO,0∥2
≤ ϵ, (94d)

Here, (94a) holds because of Lemma 9 and the fact that ηℓ · ∥ZO,ℓ∥2 ≤ 3
4 , for any integer ℓ ≥ 1 (see (89)),

(94b) uses Lemma 18, the monotonicity of f , and the fact ∥ZO,0∥2 ≤ CK ≤ 1
2 , (94c) uses (43a), and (94d)

follows directly from the definition of β and N .
Thus, {ZX,ℓ}∞ℓ=1 ⊆ Sr is a Cauchy sequence and the limit ZX,∞ := limℓ→∞ ZX,ℓ exists. The same

argument applies to ZS,∞. Similarly, from Lemma 11, we conclude that {Qℓ}∞ℓ=1 is convergent to Q∞, and
thus the limit

V∞ := lim
ℓ→∞

Qℓ

[
ZX,ℓ 0
0 0

]
QT

ℓ = Q∞

[
ZX,∞ 0
0 0

]
QT

∞

exists.
It only remains to show that V∞ = ΠSn+(Z +H). It readily follows from

Zℓ = exp(Wℓ)
T

[
ZX,ℓ ZT

O,ℓ

ZO,ℓ ZS,ℓ

]
exp(Wℓ)

= (exp(Wℓ−1) exp(Wℓ))
T

[
ZX,ℓ−1 ZT

O,ℓ−1

ZO,ℓ−1 ZS,ℓ−1

]
exp(Wℓ−1) exp(Wℓ)

...

=

(
ℓ∏

i=0

exp(Wi)

)T [
ZX,0 ZT

O,0

ZO,0 ZS,0

]( ℓ∏
i=0

exp(Wi)

)
= QT

ℓ (Z +H)Qℓ.

Thus, we conclude that
Z∞ = lim

ℓ→∞
Zℓ = QT

∞(Z +H)Q∞.

Recall that for any ℓ ∈ N, exp(Wℓ) is orthogonal, so Q∞ = limℓ→∞
∏ℓ

i=0 exp(Wi) is also orthogonal. It
implies that

ΠSn+(Z +H) = Q∞ ·ΠSn+(Z∞) ·QT
∞.

On the other hand, recall from Lemma 10 that λmin (ZX,ℓ) ≥ 1
2λmin (ZX,0) > 0 and −λmax (ZS,ℓ) ≥
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− 1
2λmax (ZS,0) > 0, so we have ZX,∞ ∈ Sr++, −ZS,∞ ∈ Sn−r

−− , and

ΠSn+(Z∞) = ΠSn++

([
ZX,∞ 0
0 ZS,∞

])
=

[
ZX,∞ 0
0 0

]
,

ΠSn+(Z +H) = Q∞

[
ZX,∞ 0
0 0

]
QT

∞ = V∞.

This concludes the proof.

D.5 Proof of Lemma 13
We prove the four conclusions one-by-one.

1. Since ∥H∥2 ≤ 1
2 min{λr,−λr+1}, we have

λmin (ZX,0) ≥ λmin (ΛX)− ∥ZX∥2 ≥ λr − ∥H∥2 ≥
1

2
λr > 0

by Weyl’s inequality and Lemma 18. Symmetrically, we obtain λmax (ZS,0) ≤ 1
2λr+1 < 0. Similarly,

we can obtain an upper bound for λmin (ZX,0) and a lower bound for λmax (ZS,0):

λmin (ZX,0) ≤
3

2
λr, λmax (ZS,0) ≤

3

2
λr+1.

2. Now we bound η0. On one hand, we have

η0 =
d

λmin (ZX,0)− λmax (ZS,0)
≤ d

1
2λr −

1
2λr+1

=
2d

λr − λr+1
=: η0,f . (95)

On the other hand, we have an lower bound for η0:

η0 ≥
d

1.5λr − 1.5λr+1
=

2d

3(λr − λr+1)
.

3. To bound αK , we first notice from ∥H∥2 ≤ 1
2 min{λr,−λr+1} that

∥Z +H∥2 ≥ ∥Z∥2 − ∥H∥2 ≥ ∥Z∥2 − 0.5min {λr,−λr+1} ,
∥Z +H∥2 ≤ ∥Z∥2 + ∥H∥2 ≤ ∥Z∥2 + 0.5min{λr,−λr+1}.

Then, from the definition of αK (42), we deduce that

αK =
f (η0 · (∥ZX,0∥2 + ∥ZS,0∥2 + 0.5))

∥ZX,0∥2

≤
f
(

2d
3(λr−λr+1)

· (2(λ1 − λn) + min {λr,−λr+1}+ 0.5)
)

λ1 − 0.5λr
=: αK,f , (96)

where the inequality uses Weyl’s inequality:

∥Z0∥2 ≥ max{∥ZX,0∥2, ∥ZS,0∥2},

∥Z0∥2 ≤ ∥Z∥2 +
1

2
min{λr,−λr+1} ≤ (λ1 − λn) +

1

2
min{λr,−λr+1}

and recall ∥ZX,0∥2 ≥ λ1 − 1
2λr.
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4. It remains to find a lower bound for CK . Since CK is the minimum of five terms, we bound each of
them one-by-one.

• C1 = 1
2 , which is trivial.

• C2 = g−1(∥ZX,0∥22). We see from the definition of g that

g(y) = y · f (2η0 · (∥ZX,0∥2 + ∥ZS,0∥2 + y)) · f (η0 · (∥ZX,0∥2 + ∥ZS,0∥2 + y))

≤ y · f (2η0,f · (2(λ1 − λn) + min {λr,−λr+1}+ y))

· f (η0,f · (2(λ1 − λn) + min {λr,−λr+1}+ y)) =: g1(y).

It is clear that g1 is monotonically increasing on [0,∞) and g1(0) = 0. Combined with the fact
that ∥ZX,0∥2 ≥ λ1 − 1

2λr, we conclude that

g−1(∥ZX,0∥22) ≥ g−1
1 (∥ZX,0∥22) ≥ g−1

1 ((λ1 − 0.5λr)
2) =: C2,f > 0,

which serves as a lower bound for C2.
• C3 = 3

8η0
≥ 3

8η0,f
=: C3,f .

• C4 = 1√
4η0αK

≥ 1√
4η0,fαK,f

=: C4,f .

• Lastly, we have

C5 =

√
1

4αK
min{λmin (ZX,0) ,−λmax (ZS,0)}

≥

√
1

4αK,f
min{1

2
λmin (ZX,0) ,−

1

2
λmax (ZS,0)} =: C5,f .

Therefore, CK,f := min{ 12 , C2,f , C3,f , C4,f , C5,f} serves as a lower bound for CK .

D.6 Proof of Lemma 14
We first show Θ0 ◦HO is the solution of

WOΛX − ΛSWO = HO.

To see this, expand both sides of the equity and consider the (i, j)th element, i ∈ {r + 1, . . . , n} and
j ∈ {1, . . . , r}:

WO,i,j · λj − λi ·WO,i,j = HO,i,j =⇒ WO,i,j =
1

λj − λi
HO,i,j =⇒ WO = Θ0 ◦HO.

Second, we show that the perturbations HX and HS only affect the second- and higher-order terms. To
see this, we explicitly write down WO,0 as:

WO,0(ΛX +HX)− (ΛS +HS)WO,0 = HO

=⇒ vec(WO,0) = (A+∆A)−1vec(HO),

where A := Ir ⊗ (−ΛS) + ΛX ⊗ In−r and ∆A := Ir ⊗ (−HS) +HX ⊗ In−r. We bound ∥∆A∥2 as

∥∆A∥2 ≤ ∥∆A∥F = ∥Ir ⊗ (−HS) +HX ⊗ In−r∥F
≤ ∥Ir ⊗ (−HS)∥F + ∥HX ⊗ In−r∥F
= ∥Ir∥F · ∥HS∥F + ∥In−r∥F · ∥HX∥F
= r∥HS∥F + (n− r)∥HX∥F
≤ n(∥HX∥F + ∥HS∥F), (97)
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and bound ∥A−1∥2 as

∥A−1∥2 = (λmin (Ir ⊗ (−ΛS) + ΛX ⊗ In−r) )
−1

=
1

λr − λr+1
, (98)

which follows from [52, Theorem 2.5] and the fact that A ∈ Sn++. Combining (97) and (98) gives

∥A−1∆A∥2 ≤
n

λr − λr+1
(∥HX∥F + ∥HS∥F) ≤

nd

λr − λr+1
(∥HX∥2 + ∥HS∥2) ≤

1

2
(99)

where the last inequliaty is from the assumption of the lemma. Therefore, we have

∥WO,0 −Θ0 ◦HO∥2
≤ ∥WO,0 −Θ0 ◦HO∥F
= ∥vec(WO,0)− vec(Θ0 ◦HO)∥2
= ∥(A+∆A)−1vec(HO)−A−1vec(HO)∥2
≤ ∥A−1vec(HO)∥2 · ∥(I +A−1∆A)−1 − I∥2

= ∥A−1vec(HO)∥2 ·

∥∥∥∥∥
∞∑
i=0

(−A−1∆A)i − I

∥∥∥∥∥
2

(100a)

≤ ∥A−1vec(HO)∥2 ·
∞∑
i=1

∥A−1∆A∥i2

≤ ∥A−1∥2 · ∥vec(HO)∥2 ·
∥A−1∆A∥2

1− ∥A−1∆A∥2

≤ 1

λr − λr+1
· ∥HO∥2 · 2 ·

1

λr − λr+1
· ∥∆A∥2 (100b)

≤ 2nd

(λr − λr+1)2
· ∥HO∥2 · (∥HX∥2 + ∥HS∥2). (100c)

In (100a), the expansion of the Neumann series is valid because ∥A−1∆A∥2 < 1
2 (see (98)); (100b) uses (98)

and (99); and finally (100c) uses (97).

Appendix E Additional Numerical Results
Figure 14 presents additional numerical results for the Hamming set problems [48]. Figure 15 reports
additional examples for the BQP problems, with c ∼ N (0, In) and random (standard Gaussian) initial
guess, and Figure 16 reports for the same problems as in Figure 15, but with all-zeros initialization. Last,
Figure 17 shows numerical results for BQP problems with c = 0 and random (standard Gaussian) initial
guess.
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