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Abstract— Decentralized optimization algorithms have re-
cently attracted increasing attention due to its wide applications
in all areas of science and engineering. In these algorithms,
a collection of agents collaborate to minimize the average
of a set of heterogeneous cost functions in a decentralized
manner. State-of-the-art decentralized algorithms like Gradient
Tracking (GT) and Exact Diffusion (ED) involve communication
at each iteration. Yet, communication between agents is often
expensive, resource intensive, and can be very slow. To this
end, several strategies have been developed to balance between
communication overhead and convergence rate of decentralized
methods. In this paper, we introduce GT-PGA, which incorpo-
rates GT with periodic global averaging. With the additional
PGA, the influence of poor network connectivity in the GT al-
gorithm can be compensated or controlled by a careful selection
of the global averaging period. Under the stochastic, nonconvex
setup, our analysis quantifies the crucial trade-off between the
connectivity of network topology and the PGA period. Thus,
with a suitable design of the PGA period, GT-PGA improves
the convergence rate of vanilla GT. Numerical experiments are
conducted to support our theory, and simulation results reveal
that the proposed GT-PGA accelerates practical convergence,
especially when the network is sparse.

I. INTRODUCTION

In decentralized optimization, a group of n agents collab-
orate to solve the optimization problem

minimize f(x) :=
1

n

n∑
i=1

fi(x), (1)

where the optimization variable is x ∈ Rd, and each
component function fi(x) is smooth, potentially nonconvex,
and held locally by agent i ∈ [n]. This problem formulation
has been widely used in modeling various important applica-
tions throughout science and engineering, including optimal
control, signal processing, resource allocation, and machine
learning [1]–[4]. In particular, decentralized/distributed op-
timization is now prevalent in modern scenarios involving
high-performance computing (HPC) resources [5].

Many decentralized methods have been proposed to solve
the problem (1), including decentralized/distributed gradi-
ent descent (DGD) methods [6]–[8], EXTRA [9], Exact-
Diffusion/D2/NIDS (ED) [10]–[13], and Gradient Tracking
(GT) methods [14]–[17]. Among them, DGD is arguably
the conceptually simplest decentralized algorithms. At each
iteration of DGD, each agent performs a local gradient step
followed by a communication round. However, DGD fails
to converge exactly with constant stepsizes when the local
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objective functions fi are heterogeneous [18], [19] (i.e., the
minimizer of f is different from that of fi.).

Due to the unsatisfactory convergence results of DGD,
exact methods (a.k.a. bias-correction methods) have been
extensively studied to account for the inherent heterogeneity
in problem (1). Among them, the family of GT algorithms
have each agent perform local gradient steps with an estimate
of the global gradient called the tracking variable [14]–[17].
In these methods, the bias (or error) caused by problem/data
heterogeneity observed in DGD is asymptotically removed.

In decentralized methods (including both DGD and exact
methods), gossip communication over the network of agents
is required at each iteration of the algorithm. Very often,
communication is computationally expensive and resource
intensive in practice [5], [20]. To this end, multiple local
recursions (or local updates) have recently been studied in the
literature. Among these methods include LocalGD [21], [22],
Scaffold [23], S-Local-GD [24], FedLin [25], and Scaffnew
[26]. LocalGD, which is based on DGD, still suffers from the
bias caused by heterogeneity, and multiple local recursions
cause agents to drift towards their local solution [27]. Other
aforementioned methods combine bias-correction techniques
with multiple local gradient updates; for example, GT with
local updates (LU-GT) have recently been studied [28]–
[31]. Nonetheless, existing analyses fail to establish any
theoretical improvement in communication complexity when
the number of local updates are deterministically prescribed
[28]–[32]. To the best of our knowledge, the only existing
analysis that theoretically establishes the benefit of local
updates in LocalGD [26] considers the special case where
the objective is strongly convex, the true gradients ∇fi
are always accessible, and the number of local updates is
randomly selected during the optimization process.

Besides local updates, the periodic global averaging
(PGA) technique has recently been developed [33] to balance
the trade-off between convergence and communication in
DGD. It is shown that PGA helps improve the transient stage
of DGD with and without local updates [33]. In modern
scenarios where high-performance data-center clusters are
the computing resources, PGA is beneficial owing to efficient
All-Reduce primitives [34]. In addition, the benefit of PGA in
DGD is significant when the network is large and/or sparse.
However, PGA does not remove the heterogeneity bias in
DGD, so DGD with PGA still does not converge exactly
with constant stepsizes.

In view of the potential benefits of PGA and the undesir-
able performance of DGD-PGA, in this work, we incorporate
periodic global averaging (PGA) into GT and propose GT-
PGA. On the one hand, we show that the incorporation



of PGA accelerates the convergence rate compared with
vanilla GT, especially on large and/or sparse networks. On
the other hand, GT-PGA also extends LU-GT (with fully
connected networks) via efficient gossip communication after
local updates.

Despite the promising acceleration in practical conver-
gence, the analysis of GT-PGA is not straightforward. Even
though the main recursion of GT-PGA can be regarded as
a special form of GT with time-varying topologies [15], its
convergence guarantees and practical performance cannot be
fully captured by existing analyses. In particular, existing
convergence results for time-varying GT rely on the spectral
gap of the least connected communication network [15].
Simply applying these results to GT-PGA does not fully
explain the superiority of the PGA operation and lead to
incomplete conclusions. Therefore, quantifying the benefits
of PGA in GT and carefully balancing the trade-off between
gossip communication and periodic global averaging require
new analysis of the decentralized algorithm.

Overall, the contributions of this paper are as follows.
• We propose to incorporate periodic global averaging

(PGA) into the Gradient Tracking (GT) algorithm and
analyze the proposed GT-PGA under the stochastic,
nonconvex setting.

• Theoretical results are established to guarantee conver-
gence of GT-PGA, and in particular, to quantify the
crucial trade-off between network connectivity and the
global averaging period. We also discuss the connection
and difference between the proposed GT-PGA, vanilla
GT, and LU-GT (GT with local updates).

• Numerical experiments are conducted to verify the es-
tablished theoretical results. In particular, the proposed
GT-PGA accelerates practical convergence compared to
vanilla GT, especially when the network is large and/or
sparse.

The rest of the paper is organized as follows. Section II
describes the proposed GT-PGA algorithm and presents the
main convergence results. In Section III, we establish the
convergence guarantees for GT-PGA, under the stochastic,
nonconvex setting, and Section IV presents numerical evi-
dence to support the theoretical results. Finally, Section V
presents concluding remarks.
Notation. Lowercase letters define vectors or scalars, upper-
case letters define matrices or scalars, and boldface letters
represent augmented network quantities. Let col{a1, . . . , an}
denote the vector that concatenates the vectors/scalars ai, and
define [n] := {1, . . . , n} for any positive integer n ∈ N≥1.
The notation 1 represents the all-ones vector, of which the
size will be clear from context. The inner product of two
vectors x, y is denoted by ⟨x, y⟩. For any real p× q matrix
A, denote its nullspace by Null(A) := {x ∈ Rq | Ax = 0}.
Products of multiple matrices are defined as

j∏
k=i

Ak :=

{
AiAi+1 · · ·Aj if j ≥ i

AiAi−1 · · ·Aj if j < i.

Note that we do not assume j ≥ i. This definition will not

cause any confusion as the value of i and j will be clear
from context.

II. GRADIENT TRACKING WITH PERIODIC GLOBAL
AVERAGING

In this section, we present the proposed decentralized
optimization algorithm for solving problem (1), state the
assumptions needed in the analysis, and establish the main
convergence result for the proposed algorithm.

In problem (1), the function fi : Rd → R held locally
by agent i is smooth, potentially nonconvex, and defined as
the expected value with respect to some probability space
(Ωi,Fi,Pi); i.e.,

fi(x) := Eξi [Fi(x; ξi)], for all i ∈ [n].

The studied optimization algorithm only has access to
stochastic gradient estimates of the true gradient of fi (see
upcoming Assumption 3), and solves the problem (1) in a
decentralized manner. Its implementation involves a graph
G = (V,W, E) that models the connections between the
group of n agents (i.e., |V| = n). Specifically, the element
wij in the matrix W scales the information agent i receives
from agent j, and wij = 0 if j /∈ Ni, where Ni is the set of
neighbors of agent i.

In this work, we incorporate periodic global averaging
into the well-known Gradient Tracking (GT) algorithms [15],
[16] and study its convergence results. Various forms of GT
exist in the literature, and the particular variant of GT con-
sidered in this paper is called Semi-ATC-TV-GT [15]. The
proposed algorithm, called Gradient Tracking with Periodic
Global Averaging (GT-PGA), is listed in Algorithm 1. In the
gossip (i.e., decentralized communication) steps (Line 6 in
Algorithm 1), every agent i collects information from all
its connected neighbors, while for global averaging steps
(Line 5 in Algorithm 1), agents synchronize their model
parameters using, e.g., the efficient All-Reduce primitives
[34]. When the global averaging period τ → ∞, GT-PGA
reduces to Gradient Tracking [15] with static topology; when
W = I , GT-PGA reduces to GT with local updates and a
fully-connected network [31].

The proposed periodic global averaging technique is effi-
cient in situations where high-performance data-center clus-
ters are the computing resources. In such a scenario, all GPUs
are fully connected with high-bandwidth channels and the
network topology can be fully controlled. Under this setting,
PGA conducted with Ring All-Reduce has tolerable com-
munication cost; see, e.g., [33]. For scenarios where PGA
is extremely expensive (e.g., in wireless sensor networks),
PGA can be approximated via multiple gossip steps, or may
not be recommended.

To write Algorithm 1 in a more concise form, we introduce
the network notation:

x(k) := col{x(k)
1 , . . . , x(k)

n } ∈ Rnd,

g(k) := col{g(k)1 , . . . , g(k)n } ∈ Rnd,

∇f (k) := col{∇f1(x
(k)), . . . ,∇fn(x

(k))} ∈ Rnd,



Algorithm 1 Gradient Tracking with Periodic Global Aver-
aging (GT-PGA)

1: Agent i input: x
(0)
i ∈ Rd, stepsize α ∈ R>0, mixing

matrix W ∈ Rn×n, averaging period τ ∈ N≥1.
2: Initialize g

(0)
i = ∇Fi(x

(0)
i , ξ

(0)
i ) ∈ Rd for all i ∈ [n].

3: for k = 0, 1, . . . do
4: for i = 1, . . . , n (in parallel) do
5: if mod(k + 1, τ) = 0 then

x
(k+1)
i =

1

n

n∑
j=1

(x
(k)
j − αg

(k)
j )

g
(k+1)
i =

1

n

n∑
j=1

g
(k)
j +∇Fi(x

(k+1)
i , ξ

(k+1)
i )−∇Fi(x

(k)
i , ξ

(k)
i ).

6: else
x
(k+1)
i =

∑
j:(j,i)∈E

wij(x
(k)
j − αg

(k)
j )

g
(k+1)
i =

∑
j:(j,i)∈E

wijg
(k)
j +∇Fi(x

(k+1)
i , ξ

(k+1)
i )−∇Fi(x

(k)
i , ξ

(k)
i ).

7: end if
8: end for
9: end for

∇F (k) := col{∇F1(x
(k)
1 ; ξ

(k)
1 ), . . . ,∇Fn(x

(k)
n ; ξ(k)n )},

x̂(k) := x(k) − 1n ⊗ x(k) ∈ Rnd,

W := W ⊗ Id, Ŵ := W − 1
n1n1

T
n ⊗ Id,

f(x(k)) := 1
n

n∑
i=1

fi(x), ∇f(x(k)) := 1
n

n∑
i=1

∇fi(x
(k)
i ),

x(k) := 1
n

n∑
i=1

x
(k)
i .

With the augmented notations, the main recursion of Algo-
rithm 1 can be written concisely as:

x(k+1) = W (k)(x(k) − αgk)

g(k+1) = W (k)g(k) +∇F (x(k+1); ξ(k+1))−∇F (x(k); ξ(k)),

where W (k) := W (k) ⊗ Id and

W (k) =

{
1
n11

T if mod(k + 1, τ) = 0

W otherwise.

Now, we list all the assumptions needed for the analysis.

Assumption 1 (Mixing matrix) The network is strongly
connected, and the mixing matrix W ∈ Rn×n satisfies
W1 = 1, WT1 = 1, and Null(I − W ) = span(1). In
addition, denote

β := ∥W − 1
n11

T∥2 ∈ (0, 1).

The quantity β indicates how well the network is connected.
A smaller β indicates a better connected network while a
larger one implies a worse connectivity.

The following two assumptions are made on the prob-
lem (1). In particular, convexity is not assumed, and the
algorithm only has access to stochastic gradient estimates
of each local function.

Assumption 2 (L-smoothness) Each function fi : Rd → R
is continuously differentiable with an L-Lipschitz continuous
gradient; i.e., there exists a constant L ∈ R>0 such that

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥,

for all (x, y) ∈ int dom fi× int dom fi and for all i ∈ [n].
In addition, the objective function f : Rd → R is bounded
below, and the optimal value of problem (1) is denoted by
f⋆ ∈ R.

At iteration k of Algorithm 1, a stochastic gradient estima-
tor of each component function fi is computed, based on
the random variable ξ

(k)
i ∈ (Ωi,Fi,Pi). let F (0) denote

the σ-algebra corresponding to the initial conditions and,
for all k ∈ N≥1, let F (k) denote the σ-algebra defined
by {x(j)}kj=0. The following assumption is made on the
stochastic gradient estimator.

Assumption 3 (Stochastic noise) For all k ∈ N and for all
i ∈ [n], the random variables ξ

(k)
i are independent of each

other. The stochastic gradient estimator satisfies

E[∇Fi(x
(k)
i ; ξ

(k)
i ) | F (k)] = ∇fi(x

(k)
i ), for all i ∈ [n].

In addition, there exists σ ∈ R>0 such that for all k ∈ N
and for all i ∈ [n], it holds that

E[∥∇Fi(x
(k)
i ; ξ

(k)
i )−∇fi(x

(k)
i )∥2 | F (k)] ≤ σ2.

We now state the main result of this paper on the conver-
gence guarantees of Algorithm 1.

Theorem 1 (Convergence of GT-PGA) Let Assumptions 1
to 3 hold, let τ ∈ N≥2, and let the stepsize satisfy
α ≤ min

{
1
2L ,

1
4
√
6βτ2L

}
. Then, for any K ∈ N≥τ+1, the

sequence {x(k)} generated by Algorithm 1 satisfies

1

K + 1

K∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x(k))∥2

)
≤ γ1L

2

nK
+

γ2βτ
2L2

K
+ γ3σ

2
( 1

(1− β2)τ2
+

1

βτ2n

)
(3)

with some constants (γ1, γ2, γ3) ∈ R>0 × R>0 × R>0.

In general, GT-PGA exhibits an O(1/K) convergence rate,
consistent with the results for gradient tracking algorithms
under the stochastic, nonconvex setup (see, e.g., [15]). As is
typical in the literature, the first term on the right-hand side
of (3) is related to the number of agents and independent of
the topology as well as the PGA period τ . The crucial trade-
off between the connectivity of the communication network
(β) and the PGA period (τ ) is depicted in the second term
in (3).

• When the network is large or sparse (i.e., β → 1),
global averaging is more critical to drive consensus and
a smaller τ is needed to compensate the negative effect
of poor connectivity.

• When the network is small or dense, gossip communica-
tion is already helpful enough to achieve consensus and



a larger τ can be used. In the extreme case, GT-PGA
with τ → ∞ reduces to vanilla GT.

• Recall that when W = I , GT-PGA reduces to GT
with fully-connected graphs and with local updates
(LU-GT). Thus, gossip communication in GT-PGA also
contributes to consensus, and this property is critical to
establish the superiority of GT-PGA with LU-GT.

Therefore, thanks to the periodic global averaging operation,
GT-PGA enjoys promising convergence properties compared
with vanilla GT and LU-GT, and our analysis supports the
above discussion.

We end this section with an auxiliary convergence result
with further tuning on the stepsize α. The same stepsize
tuning strategy is common in the literature on decentralized
optimization; see, e.g., [21], [23], [27], [32].

Corollary 2 Let Assumptions 1 to 3 hold, let τ ∈ N≥2, and
let the stepsize satisfy

α = min

{(
nL

Kσ2

) 1
2

,

(
1− β2

β2τ2Kσ2

) 1
2

,
1

2L
,

1

4
√
6βτ2L

}
.

(4)
In addition, suppose n ≫ 1/(βτ)2 (e.g., the number of
agents n is sufficiently large or the network is sufficiently
sparse). Then, for any K ∈ N≥τ+1, the sequence {x(k)}
generated by Algorithm 1 satisfies

1

K + 1

K∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x(k))∥2

)
≤ γ4βτ

2L3

K
+

γ5L
3
2σ

(nK)
1
2

+
γ6βτL

2σ

(1− β2)
1
2K

1
2

with some constants (γ4, γ5, γ6) ∈ R>0 × R>0 × R>0.

III. ALGORITHM ANALYSIS

This section presents the theoretical analysis of Algo-
rithm 1 stated in Theorem 1. As typical in the analyses
of decentralized algorithms, the two important pillars are
the descent inequality and the consensus inequality. The
descent inequality establishes the convergence properties of
the averaged iterates x(k) to a first-order stationary point and
is standard in the analyses of GT (see upcoming Lemma 3).
The consensus inequality is different from existing analyses
and characterizes the per-iteration behavior of the consensus
error; see upcoming Lemma 4.

Lemma 3 (Descent inequality [35, Lemma 5.1]) Let As-
sumptions 1 to 3 hold, and let the stepsize satisfy α ∈(
0, 1

2L

]
. Denote f̃ := f − f⋆. Then, the sequence generated

by Algorithm 1 satisfies

1

K + 1

K∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x(k))∥2

)
≤ 4

α(K + 1)
Ef̃(x(0)) +

2L2

n(K + 1)

K∑
k=0

E∥x̂(k)∥2 + 2αLσ2

n
,

for all k ∈ N.

Note that this inequality does not involve the mixing matrix
W , so it holds for gradient tracking with static topology as
well as the proposed GT-PGA. Its derivation is standard in
the literature and thus omitted here.

The second lemma studies the behavior of the consensus
error and is used to establish that all agents’ local variables
converge to their average.

Lemma 4 (Consensus inequality) Let Assumptions 1 to 3
hold, let τ ∈ N≥2, and let the stepsize satisfy α ∈(
0, 1

4
√
6βτ2L

]
. Then, for K ∈ N≥τ+1, the iterates generated

by Algorithm 1 satisfy

1

K + 1

K∑
k=0

E∥x̂(k)∥2 ≤ 2

K + 1

τ∑
k=0

E[∥x̂(k)∥2]

+
n

192β2τ4L2(K + 1)

K∑
k=0

E[∥∇f(x(k))∥2]

+
( 1

768β2τ4L2
+

n

24τ4L2
+

n

6(1− β2)τ2L2

)
σ2. (5)

Due the space limitation, the proof of Lemma 4 can be found
in the arxiv version [36, Lemma 4].

With Lemmas 3 and 4, we are ready to present the proof
of the main result of this paper.
Proof of Theorem 1: Combining Lemma 3 with (5) yields

1

K + 1

K∑
k=0

(
E∥∇f(x(k))∥2 + E∥∇f(x(k))∥2

)
≤ 4

α(K + 1)
Ef̃(x(0)) +

4L2

n(K + 1)

τ∑
k=0

E[∥x̂(k)∥2]

+
96α4β2τ4nL4

K + 1

K∑
k=0

(
E∥∇f(x(k))∥2 + E[∥∇f(x(k))∥2]

)
+

(24α4β2τ4L4 + 2αL

n
+ 8α2β2L2 +

32α2β2τ3L2

1− β2

)
σ2.

Grouping similar terms on the left-hand side gives

1− 96α4β2τ4nL4

K + 1

K∑
k=0

(
E∥∇f(x(k))∥2 + E[∥∇f(x(k))∥2]

)
≤ 4

α(K + 1)
Ef̃(x(0)) +

4L2

n(K + 1)

τ∑
k=0

E[∥x̂(k)∥2]

+
(24α4β2τ4L4 + 2αL

n
+ 8α2β2L2 +

32α2β2τ2L2

1− β2

)
σ2.

The stepsize condition α ≤ 1
4
√
6βτ2L

implies that

1

K + 1

K∑
k=0

(
E∥∇f(x(k))∥2 + E[∥∇f(x(k))∥2]

)
≤ 8

α(K + 1)
Ef̃(x(0)) +

8L2

n(K + 1)

τ∑
k=0

E[∥x̂(k)∥2]

+
(48α4β2τ4L4 + 4αL

n
+ 16α2β2L2 +

64α2β2τ2L2

1− β2

)
σ2

≤ 32
√
6βτ2L

K + 1
Ef̃(x(0)) +

8L2

n(K + 1)

τ∑
k=0

E[∥x̂(k)∥2]



+
σ2

192β2τ4n
+

σ2

√
6βτ2n

+
σ2

6τ4
+

2σ2

3(1− β2)τ
, (6)

where in the last step we plug in the stepsize condition. ■
Now we state the proof of Corollary 2. To improve the

readability of the proof, from now on, we use the notation
≲ to hide irrelevant constants. The notation a ≲ b means that
there exists a positive constant γ ∈ R>0 such that a ≤ γb.
In our case, the important quantities that we keep are α, β,
τ , n, L, and σ.
Proof of Corollary 2: From the stepsize condition α ≤
min

{
1
2L ,

1
4
√
6βτ2L

}
, the inequality (6) becomes

1

K + 1

K∑
k=0

(
E∥∇f(x(k))∥2 + E[∥∇f(x(k))∥2]

)
≲

L2

αK
+

αLσ2

n
+

α4β2τ4L4σ2

n
+

α2β2τ2L2σ2

1− β2

≲
L2

αK
+

αLσ2

n
+

α2α2β2τ4L4σ2

n
+

α2β2τ2L2σ2

1− β2

≲
L2

αK
+

αLσ2

n
+

α2L2σ2

n
+

α2β2τ2L2σ2

1− β2

≲
L2

αK
+

αLσ2

n
+

α2β2τ2L2σ2

1− β2
, (7)

≲
c1
αK

+ c2α+ c3α
2,

where c1 = L2, c2 = Lσ2

n , and c3 = β2τ2L2σ2

1−β2 . In (7) we use
the assumption that 1

n ≪ β2τ2. Now we set the stepsize α
as in (4). (Note that by definition, this choice of α satisfies
the condition in Theorem 1.) We then discuss the following
three cases.

1) If α = min
{

1
2L ,

1
4
√
6βτ2L

}
, then

c1
αK

+ c2α+ c3α
2 ≲

c1
αK

+
(c1c2

K

) 1
2

+
(c1c3

K

) 1
2

.

2) If α =
(

c1
c2K

) 1
2 ≤

(
c1

c3K

) 1
2

, then

c1
αK

+ c2α+ c3α
2 ≲

(c1c2
K

) 1
2

+
(c1c3

K

) 1
2

.

3) If α =
(

c1
c3K

) 1
2 ≤

(
c1

c2K

) 1
2

, then

c1
αK

+ c2α+ c3α
2 ≲

(c1c2
K

) 1
2

+
(c1c3

K

) 1
2

.

Combing all three cases yields

c1
αK

+ c2α+ c3α
2 ≲

c1
αK

+
(c1c2

K

) 1
2

+
(c1c3

K

) 1
2

≲
βτ2L3

K
+

L
3
2σ

(nK)
1
2

+
βτL2σ

(1− β2)
1
2K

1
2

.

IV. NUMERICAL EXPERIMENTS

This numerical experiments presented in this section illus-
trate how GT-PGA accelerates practical convergence com-
pared to vanilla GT. We apply GT-PGA to solve the least
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(d) Static hypercuboid.

Fig. 1: Performance of GT-PGA for solving (8) with various
topologies. The plots report ∥∇f(x(k))∥2 + ∥∇f(x(k))∥2,
and use the ring, 2D-MeshGrid, the star graph, and the static
hypercuboid, respectively. Different curves on each figure
use different PGA period, i.e., τ = 20, 50, 100, 200, and ∞
(equivalent to vanilla GT).

squares problem with a nonconvex regularization term:

minimize
1

n

n∑
i=1

∥Aix− bi∥22 + λ

d∑
j=1

x[j]

1 + x[j]
, (8)

where the decision variable is x ∈ Rd, x[j] is the jth
component of x, and {(Ai, bi)}ni=1 ⊂ Rmi×d ×Rmi are the
local data held by agent i. In our simulation, we set λ = 0.01,
n = 64, d = 20, mi = 500 for all i ∈ [n], and the entries
of each Ai are drawn independently from standard Gaussian
distribution. For all i ∈ [n], we randomly generate x̃i ∈ Rd

and set bi = Aix̃i + zi, where zi ∼ N (0, 0.01) are drawn
independently. We test Algorithm 1 on various topologies,
including the ring graph, 2D-MeshGrid, star graph, and static
hypercuboid [35].

The simulation results depicted in Figure 1 show the su-
periority of the PGA operation and align with the theoretical
insight from Theorem 1 and Corollary 2. For the sparse ring
graph (Figure 1a), PGA helps reduce the stochastic noise
caused by stochastic gradients, and GT-PGA converges to
a more accurate solution compared to vanilla GT. For 2D-
MeshGrid and the star graph, GT-PGA exhibits a better
practical performance in terms of convergence rate. For
static hyper-cuboids, the benefit of GT-PGA is marginal,
potentially because of the desirable properties of static hyper-
cuboids [35].



V. CONCLUSION

We incorporate periodic global averaging (PGA) into
Gradient Tracking (GT) and propose a new decentralized
algorithm GT-PGA. We establish convergence guarantees
for GT-PGA under the stochastic, nonconvex setting and
showcase the superiority of GT-PGA compared with vanilla
GT. Numerical results validate the improvements in practical
convergence due to the proposed periodic global averaging
operation. While we focus on the nonconvex setting (due to
space constraints), it is straightforward to extend our analysis
to the convex setting.

In this work, we focus on a specific form of GT [15].
It is not clear whether PGA can be incorporated into other
forms of GT and whether a unified analysis similar to, e.g.,
[37], still holds. Moreover, the connection (or difference)
between PGA and multi-consensus is still unknown, and
further analysis is needed to quantify the trade-off between
these two techniques.
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