
Swapping objectives accelerates Davis–Yin splitting

Edward Duc Hien Nguyen∗ Jaewook J. Suh† Xin Jiang‡ Shiqian Ma†

June 30, 2025

Abstract

In this work, we investigate the application of Davis–Yin splitting (DYS) to convex optimiza-
tion problems and demonstrate that swapping the roles of the two nonsmooth convex functions
can result in a faster convergence rate. Such a swap typically yields a different sequence of iter-
ates, but its impact on convergence behavior has been largely understudied or often overlooked.
We address this gap by establishing best-known convergence rates for DYS and its swapped
counterpart, using the primal–dual gap function as the performance metric. Our results indi-
cate that variants of the Douglas–Rachford splitting algorithm (a special case of DYS) share
the same worst-case rate, whereas the convergence rates of the two DYS variants differ. This
discrepancy is further illustrated through concrete examples.

1 Introduction

We study proximal splitting methods for convex optimization problems in the following form

minimize
x∈Rn

f(x) + g(x) + h(x), (1.1)

where f , g, and h are closed convex proper (CCP) functions and h is differentiable. This problem
covers a wide variety of applications in machine learning, signal and image processing, operations
research, control, and other fields [7,9,11,23,28]. A well-known method for solving problem (1.1) is
the Davis–Yin splitting (DYS) algorithm [14, Algorithm 1]:

wk+1 = proxαg(y
k)

xk+1 = proxαf (2w
k+1 − yk − α∇h(wk+1))

yk+1 = yk + xk+1 − wk+1,

(DYS)

where α > 0 is a stepsize. (DYS) recovers several classical methods when parts of problem (1.1)
vanish. For example, it reduces to the Douglas–Rachford splitting (DRS) algorithm [15,21,25] when
h = 0, and to the forward–backward splitting (FBS) algorithm [21,24] when either f or g vanishes.

One may observe that f and g play symmetric roles in problem (1.1), and thus swapping them
does not alter the problem at all. Yet this symmetry does not carry over to the algorithmic level.

∗Department of Electrical and Computer Engineering, Rice University. Email: en18@rice.edu.
†Department of Computational Applied Mathematics and Operations Research, Rice University. Email:

{jacksuh, shiqian.ma}@rice.edu.
‡School of Operations Research and Information Engineering, Cornell University. Email: xjiang@cornell.edu.

1



Swapping f and g in (DYS) generally leads to a different sequence of variables and thus a different
algorithm [17,33]. This distinction is not merely theoretical: in practical applications, f and g often
represent structurally different components [7,9], such as a data-fitting term and a regularizer, mak-
ing it important to clearly specify which function plays which role. While the non-equivalence due to
update order is well understood, its effect on convergence rate remains underexplored—particularly
because, for commonly used performance measures such as the primal–dual gap function, the anal-
ysis does not directly extend to the swapped algorithm.

In view of this subtle yet critical distinction, we analyze the convergence rate of the four algo-
rithms: DYS, DRS, and their swapped versions, with the primal–dual gap function as the perfor-
mance measure. Perhaps surprisingly, the swapped version of (DYS) achieves a faster worst-case
ergodic rate of convergence, underscoring the tangible impact of update order on algorithmic per-
formance.

Contributions. The contributions of this paper are summarized as follows.

• We provide novel convergence analyses of DYS, DRS, and their swapped versions, by deriving
equalities that explicitly reveal the critical inequalities used in the proof. These equalities not
only imply immediately the ergodic convergence rates for the primal–dual gap function but
also provide guidance for constructing worst-case examples for each algorithm.

• Our analyses reveal that the swapped version of DYS converges faster than the original one,
whereas both variants of DRS share the same worst-case rate. This appears to be the first
result that formally distinguishes between the two variants of splitting methods based on their
convergence rates.

• The tightness of the established rates for the two DRS variants is confirmed through worst-case
examples. The discrepancy between the two DYS variants is also demonstrated via concrete
examples.

Outline. The rest of the paper is organized as follows. Section 2 reviews fundamental concepts
from convex analysis and summarizes existing convergence results for DYS and DRS. In Section 3,
we analyze the convergence of two DRS variants and establish the tightness of the results via
worst-case examples. Similarly, Section 4 presents analyses of two DYS variants, demonstrating a
difference in their convergence rates via concrete examples. Finally, Section 5 concludes the paper.

2 Background material and prior work

In this section, we review fundamental concepts from convex optimization and introduce the notation
used throughout the paper. We also present two variants of DRS and DYS, along with their known
convergence results. Although both DRS and DYS were originally proposed to solve monotone
inclusion problems, we focus in this paper on the seemingly more restrictive setting of convex
optimization. This choice is motivated by the fact that the discrepancy in convergence rates between
the two variants of DYS arises specifically within this narrower setting. In particular, the illustrative
examples presented later involve only convex functions.

Throughout the paper, we use the notation ⟨x, y⟩ = xT y for the standard inner product of vectors
x and y, and ∥x∥ = ⟨x, x⟩1/2 for the Euclidean norm of a vector x. Also, we denote N (resp., N+)
as the set of nonnegative (resp., positive) integers, i.e., N := {0, 1, 2, . . .} and N+ := {1, 2, . . .}.

2



2.1 Basic concepts and notation in convex optimization

We follow the standard definitions in convex optimization; see, e.g., [2, 5, 22, 27, 28]. We denote
the subdifferential of a convex function f : Rn → R as ∂f , defined by ∂f(x) := {v ∈ Rn | f(y) ≥
f(x) + ⟨v, y − x⟩ for all y ∈ Rn}. An element of ∂f(x) is called a subgradient of f at x, and when
its choice is unambiguous, we use the shorthand ∇̃f(x), following the notation introduced in [3]:
∇̃f(x) ∈ ∂f(x). With this, the inequality in the definition of ∂f becomes

f(x)− f(y) + ⟨∇̃f(x), y − x⟩ ≤ 0 for all y ∈ dom f. (2.1)

The notation ∇̃f is particularly useful in studying the proximal operator of a CCP function f :

proxf (x) := argmin
y∈Rn

{f(y) + 1
2∥y − x∥2}.

We often denote ∇̃f(proxαf (x)) := 1
α(proxαf (x) − x) ∈ ∂f(proxαf (x)), and then the proximal

operator of αf (with α > 0) can be written as:

proxαf (x) = x− α∇̃f(proxαf (x)). (2.2)

Since proxαf is well defined when f is CCP, ∇̃f(proxαf (x)) is uniquely determined.
For any function f , its Fenchel conjugate is defined as f∗(y) := supx {⟨y, x⟩ − f(x)}. When f is

CCP, it holds that

f∗(y) = ⟨y, x⟩ − f(x) ⇐⇒ y ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(y), (2.3)

which is called Fenchel’s identity, and the equality

proxαf (x) + αproxα−1f∗(x/α) = x (2.4)

holds for all x and all α > 0, which is known as Moreau identity.
We say f is L-smooth if it is differentiable and its gradient is L-Lipschitz continuous. When f

is L-smooth and convex, it satisfies the inequality (see, e.g., [22, Theorem 2.1.5])

f(x)− f(y) + ⟨∇f(x), y − x⟩+ 1

2L
∥∇f(x)−∇f(y)∥2 ≤ 0 for all x, y ∈ dom f. (2.5)

Dual problem and optimality conditions. The dual of problem (1.1) is

maximize
u∈Rn

−(f + h)∗(−u)− g∗(u), (2.6)

where the conjugate (f + h)∗ is the infimal convolution of f∗ and h∗:

(f + h)∗(u) = inf
w

{f∗(w) + h∗(u− w)} .

The primal–dual optimality conditions for (1.1) and (2.6) are

0 ∈ ∂f(x) +∇h(x) + u, 0 ∈ ∂g∗(u)− x. (2.7)

Throughout the paper, we assume (2.7) is solvable, so strong duality holds for (1.1) and (2.6).

3



We will refer to the convex–concave function

L(x, u) = f(x) + h(x) + ⟨u, x⟩ − g∗(u) (2.8)

as the Lagrangian of (1.1). We follow the convention that L(x, u) = +∞ if x /∈ dom(f + h)
and L(x, u) = −∞ if x ∈ dom(f + h) and u /∈ dom g∗. The objectives in (1.1) and the dual
problem (2.6) can be respectivley expressed as

sup
u

L(x, u) = f(x) + g(x) + h(x), inf
x
L(x, u) = −(f + h)∗(−u)− g∗(u).

A solution (x⋆, u⋆) of the optimality conditions (2.7) forms a saddle point of L:

inf
x
sup
u

L(x, u) = sup
u

L(x⋆, u) = inf
x
L(x, u⋆) = sup

u
inf
x
L(x, u).

Then, it holds that
L(x⋆, u) ≤ L(x⋆, u⋆) ≤ L(x, u⋆)

for all x ∈ dom f and u ∈ dom g∗. In particular, L(x⋆, u⋆) is the optimal value of (1.1) and (2.6),
and the pair of primal–dual problems is equivalent to the saddle point problem

minimize
x∈Rn

maximize
u∈Rn

L(x, u). (2.9)

Discussion on performance measures. Our analysis focuses on the convergence of the algo-
rithms applied to solving the saddle point problem (2.9) and studies the primal–dual gap function

L(xK , u)−L(x, uK) = f(xK)+h(xK)+ ⟨u, xK⟩−g∗(u)−
(
f(x)+h(x)+ ⟨uK , x⟩−g∗(uK)

)
. (2.10)

More precisely, the performance measure we choose is

sup
x∈dom f
u∈dom g∗

{
L(xK , u)− L(x, uK)

}
, (2.11)

which has been used extensively in the analysis of primal–dual splitting methods; see, e.g., [6, 8,
10, 20, 29, 31]. One shall note that the quantity L(xK , u⋆) − L(x⋆, uK) is not a valid performance
measure: while this quantity is 0 when (xK , uK) is a saddle point, the converse is not necessarily
true [6]. So the pointwise supremum over (x, u) is necessary in (2.11). Unlike gradient-based
methods, the choice of the performance measure in DRS and DYS is somewhat arbitrary and often
dictated by the analysis techniques employed. It is difficult to determine which metric is most
natural or informative, as each comes with its own advantages and limitations. For example, the
objective gap |f(xK) + g(wK)− f(x⋆)− g(x⋆)|, used in the seminal work [13], does not capture the
fact that both xK and wK in DRS converge to a primal solution x⋆. As a result, this measure alone
does not guarantee the convergence of the iterates. By contrast, the objective value f(xK)+ g(xK)
can be +∞ as xK may not be in the domain of g. So the use of |f(xK) + g(xK)− f(x⋆)− g(x⋆)| is
valid if, e.g., g is additionally locally Lipschitz [13].

2.2 Douglas–Rachford splitting algorithms

In this section, we present two variants of DRS for solving the problem (1.1) in the special case
where h = 0. Although these algorithms can be viewed as special cases of DYS, we present them
explicitly to highlight that the discrepancy in convergence rates between the two variants of DYS
arises from the presence of the smooth function h.

4



DRS-gf . The Douglas–Rachford splitting algorithm [15,18,21,25] for solving (1.1) with h = 0 is

wk+1 = proxαg(y
k) (2.12a)

xk+1 = proxαf (2w
k+1 − yk) (2.12b)

yk+1 = yk + xk+1 − wk+1, (2.12c)

where α > 0 is a stepsize. Then, we define uk+1 = proxα−1g∗(
1
αy

k) and eliminate wk+1 and yk+1

to obtain

uk+1 = proxα−1g∗(u
k + 1

αx
k)

xk+1 = proxαf (x
k − α(2uk+1 − uk)),

(DRS-gf)

which we will refer to as DRS-gf , as it calls g first and then f . The presented form (DRS-gf) solves
the saddle point problem (2.9) with h = 0 and has been studied in, e.g., [11, Eq. (5.18)] and [20, §3].
Its convergence has been analyzed under various regularity conditions and here we focus on the most
basic setting where both f and g are CCP functions. In this case, convergence of the iterates follows
readily, as (2.12) can be interpreted as an instance of the proximal point method [18]. Specifically,
the iterates (xk, wk, yk) generated by (2.12) converge to (x⋆, x⋆, x⋆ + αu⋆) and the iterates (xk, uk)
generated by (DRS-gf) converge to (x⋆, u⋆). In addition, (DRS-gf) converges at a sublinear rate.
More precisely, the non-ergodic sequence in (2.12) exhibits the following rate [13, Theorem 4], [19]:

|f(xK) + g(wK)− f(x⋆)− g(x⋆)| = o(1/
√
K + 1), (2.13)

while the ergodic sequence (xK , wK) converges at a faster O(1/(K + 1)) rate [13, Theorem 3]:

|f(xK) + g(wK)− f(x⋆)− g(x⋆)| = O(1/(K + 1)), (2.14)

where given K ∈ N+, we define zK := 1
K

∑K
k=1 z

k for z ∈ {x,w, u}. These rates are shown to
be tight up to a constant [13]. Moreover, the O(1/(K + 1)) ergodic rate remains valid when the
primal–dual gap function (2.10) is used [4, 8, 20].

DRS-fg. Since (2.12) is not symmetric in f and g, exchanging f and g yields a different algorithm

xk+1 = proxαf (y
k)

wk+1 = proxαg(2x
k+1 − yk)

yk+1 = yk + wk+1 − xk+1.

Letting uk+1 = α−1(2xk+1−yk−wk+1) and applying Moreau identity (2.4), we can eliminate wk+1

and yk+1 and obtain an equivalent algorithm

xk+1 = proxαf (x
k − αuk)

uk+1 = proxα−1g∗(u
k + 1

α(2x
k+1 − xk)),

(DRS-fg)

which we will refer to as DRS-fg.
In general, (DRS-gf) and (DRS-fg) generate different iterates [33] and are thus considered

not equivalent. Nevertheless, the convergence of (DRS-fg) iterates can be established via similar

5



arguments, as (DRS-fg) can also be interpreted as an instance of the proximal point method with
a different splitting strategy [17,18]. Moreover, since the objective gap is invariant in the order of f
and g, the convergence rate results (2.13) and (2.14) carry over directly to (DRS-fg). In contrast,
the primal–dual gap function (2.10) treats f and g asymmetrically, so the convergence guarantees
for (DRS-gf) established in [4, 8] do not automatically extend to (DRS-fg). As in this paper we
adopt the primal–dual gap function (2.10) as the performance measure, our analysis for (DRS-fg)
must proceed separately, even though both algorithms ultimately exhibit the same worst-case rate.

2.3 Davis–Yin splitting algorithms

DYS-gf . The iterations (DYS) were first presented in [14] and are now referred to as the Davis–
Yin splitting algorithm in the literature. Again, we introduce uk+1 = proxα−1g∗(

1
αy

k) and apply
Moreau identity (2.4) to eliminate wk+1 and yk+1:

uk+1 = proxα−1g∗(u
k + 1

αx
k)

xk+1 = proxαf (x
k − α(2uk+1 − uk)− α∇h(xk + α(uk − uk+1))),

(DYS-gf)

which we will refer to as DYS-gf . This form solves the saddle point problem (2.9) and when h = 0,
(DYS-gf) reduces to (DRS-gf). DYS was originally introduced as a fixed-point iteration scheme
for solving monotone inclusion problems, so its convergence rate is often measured by the fixed-
point residual; see, e.g., [14]. As in our discussion of DRS, we focus on the convex optimization
setting under minimal assumptions, where f and g are merely CCP functions. While convergence
of the DYS iterates is well established [14, §4.1], the convergence rate of (DYS-gf) (under the
general convex setting) has received less attention. In existing works [26,29,32,37], DYS is typically
viewed as a primal–dual splitting method, with the primal–dual gap function (2.10) used as the
performance measure, and an O(1/K) ergodic convergence rate is typically established. Yet the
tightness of these rates is not discussed. Finally, we note that numerous variants of DYS have
been proposed, including stochastic DYS [34–37], inexact DYS [38], adaptive DYS [26], and inertial
DYS [12]. Some of these consider settings different from ours and hence not discussed in detail.

DYS-fg. As for (DRS-gf), we switch the role of f and g in (DYS) and obtain a different algorithm

xk+1 = proxαf (x
k − α(uk +∇h(xk)))

uk+1 = proxα−1g∗(u
k + 1

α(2x
k+1 − xk + α∇h(xk)− α∇h(xk+1))),

(DYS-fg)

which we will refer to as DYS-fg. When h = 0, (DYS-fg) reduces to (DRS-fg). This form (DYS-fg)
was first presented as a special case of the PD3O algorithm [31]; see also [11, Eq. (8.6)] and [20, §3].
As noted earlier, (DRS-gf) and (DRS-fg) are not equivalent; nor are (DYS-gf) and (DYS-fg).
Consequently, the results in [14, 26, 32, 37] for (DYS-gf) do not directly extend to (DYS-fg), as
they adopt performance measures that treat f and g asymmetrically. An O(1/K) ergodic rate for
(DYS-fg) is established in [31, Theorem 2] (using a slightly different gap function, which starts at
iteration 0 rather than 1) and [20, Theorem 4], though the tightness of these rates is not addressed.

2.4 Preview of the established convergence rates

Despite all the aforementioned literature on proximal splitting methods, direct analyses of the
swapped algorithms, (DRS-fg) and (DYS-fg), remain underdeveloped, and worse-case rate com-
parisons with their original counterparts, (DRS-gf) and (DYS-gf), have received limited attention.

6



Table 1: An overview of convergence rates and lower bound examples for the four algorithms. All
results are derived under the unified performance measure (2.11) and the initial distance (2.15).

Convergence rate Lower bound example

DRS-gf D/(K + 1) (Theorem 3.2) D/(K + 1) (Theorem 3.4)

DRS-fg D/(K + 1) (Theorem 3.6) D/(K + 1) (Theorem 3.8)

DYS-gf D/K (Theorem 4.2) slower than D/(K + 1) (Theorem 4.3)

DYS-fg D/(K + 1) (Theorem 4.5) D/(K + 1) (Corollary 4.6)

To address this gap and better understand the impact of swapping the two nonsmooth functions f
and g, we establish the best-known convergence rates for all four algorithms and provide concrete
examples for illustration; see Table 1 for a concise overview. Recall that our analysis is based on
the unified performance measure (2.11), and for fair comparison, we adopt a unified initial distance

D0(x, u) :=
1

α
∥x0 − x∥2 + α∥u0 − u∥2. (2.15)

Accordingly, a rate D/(K + 1) in Table 1 means that the metric (2.10) is smaller than or equal to
D0(x, u)/(K + 1) for all x, u ∈ Rn, a convention we will use throughout the paper. For (DRS-gf),
(DRS-fg), and (DYS-fg), we construct concrete examples that attain the stated rate, thereby
confirming their tightness. For (DYS-gf), we present an instance whose rate is strictly slower than
D/(K + 1), the tight worst-case rate for (DYS-fg). This demonstrates that the worst-case rate of
(DYS-gf) is indeed slower than that of (DYS-fg), implying that swapping f and g in (DYS) can
lead to a faster convergence.

3 Convergence analysis of two variants of DRS

In this section, we analyze the convergence of (DRS-gf) and (DRS-fg) using the primal–dual
gap function (2.10) as the performance measure. To demonstrate the tightness of our results, we
construct worst-case examples for which the two variants of DRS converge at exactly the established
rates. Although the worst-case examples differ only by a sign, the analyses of (DRS-gf) and
(DRS-fg) must be carried out separately. This separation also facilitates a clear comparison with
the analyses of (DYS-gf) and (DYS-fg) in Section 4, whose rates, perhaps surprisingly, do not
coincide. Note that h ≡ 0 in this section.

3.1 DRS-gf : worst-case rate and its tightness

We begin our analysis of (DRS-gf) with another equivalent reformulation

uk+1 = uk + 1
αx

k − 1
α∇̃g∗(uk+1) (3.1a)

xk+1 = xk − α(2uk+1 − uk)− α∇̃f(xk+1), (3.1b)

where we used (2.2). For later use, we also introduce the notation

pk := ∇̃g∗(uk) = αuk−1 + xk−1 − αuk, (3.2)

7



which implies from (2.3) that uk+1 ∈ ∂g(pk+1). We will see how the use of ∇̃ in reformulating
(DRS-gf), inspired by [3, 14], facilitates the analysis of (DRS-gf).

Similarly, for the ergodic iterate uK and an arbitrary u ∈ Rn, we denote their corresponding
subgradients of g∗ as pK and p, respectively:

pK ∈ ∂g∗(uK), p ∈ ∂g∗(u). (3.3)

One shall be aware that pK is a subgradient of g∗ at uK rather than the average of {pk}Kk=1. It then
follows from (2.3) that uK ∈ ∂g(pK), u ∈ ∂g(p), and

g∗(uK) = ⟨uK , pK⟩ − g(pK), g∗(u) = ⟨u, p⟩ − g(p).

The introduction of pK and p helps reformulate the primal–dual gap function (2.10) (with h = 0):

L(xK , u)−L(x, uK) = f(xK)+ ⟨u, xK⟩−⟨u, p⟩+g(p)−
(
f(x)+ ⟨uK , x⟩−⟨uK , pK⟩+g(pK)

)
. (3.4)

We now derive an equality that will play an important role in obtaining the tight convergence
rate of (DRS-gf). Its development is motivated by a computer-aided analysis framework known as
the performance estimation problem (PEP) [16,30].

Proposition 3.1. Suppose f and g are CCP functions, and {(xk, uk)}k∈N is generated by (DRS-gf)
with stepsize α > 0 and initial points (x0, u0). Denote pk as in (3.2), and pK , p as in (3.3). For
K ∈ N+, define the ergodic iterates

xK :=
1

K

K∑
k=1

xk, uK :=
1

K

K∑
k=1

uk. (3.5)

Then, for all K ∈ N+ and all x, u ∈ Rn, the equality

L(xK , u)− L(x, uK)− D0(x, u)

K + 1
= If + Ig − S1 − S2 (3.6)

holds, where D0(x, u) is defined in (2.15),

vk := ∇̃f(xk) + uk (3.7)

and

If :=
1

K

K∑
k=1

(
f(xK)− f(xk) +

〈
∇̃f(xK), xk − xK

〉)
+

1

K

K∑
k=1

(
f(xk)− f(x) +

〈
∇̃f(xk), x− xk

〉)
Ig :=

1

K

K∑
k=1

(
g(pk)− g(pK) +

〈
uk, pK − pk

〉)
+

1

K

K∑
k=1

(
g(p)− g(pk) +

〈
u, pk − p

〉)

S1 :=
1

α(K + 1)

∥∥∥∥∥x0 − x− α(K + 1)

2K

K∑
k=1

vk

∥∥∥∥∥
2

+ α2

∥∥∥∥∥u0 − u− K + 1

2K

K∑
k=1

vk

∥∥∥∥∥
2


S2 :=
α

2K2

K∑
k=1

k−1∑
l=1

∥∥∥vk − vl
∥∥∥2 .

(3.8)

8



Before proving Proposition 3.1, we present its two immediate implications. More specifically,
Proposition 3.1 is used to establish an ergodic convergence rate of (DRS-gf) (see Theorem 3.2) and
also helpful in building a worst-case example (see Corollary 3.3).

Theorem 3.2 (Convergence of (DRS-gf)). Suppose f and g are CCP functions, and {(xk, uk)}k∈N
is generated by (DRS-gf) with stepsize α > 0 and initial points (x0, u0). Then, for all K ∈ N+, the
ergodic iterates (xK , uK) defined in (3.5) satisfy

L(xK , u)− L(x, uK) ≤ D0(x, u)

K + 1
(3.9)

for all x ∈ dom f and all u ∈ dom g∗, where D0(x, u) is defined in (2.15).

Proof. It follows from (2.1) and the convexity of f and g that If and Ig defined in (3.8) are
nonpositive. Moreover, the two quantities S1 and S2 are nonnegative since they are sums of squared
terms. The desired conclusion (3.9) then follows directly from Proposition 3.1.

Moreover, the inequality (3.9) holds with equality if and only if the four quantities defined in
(3.8) are all zero. This result is formalized in Corollary 3.3 and will be used to build a worst-case
example that demonstrates the tightness of the convergence rate (3.9).

Corollary 3.3. Let x ̸= x0 and u ̸= u0. Under the same setting as in Theorem 3.2, the inequal-
ity (3.9) holds with equality if and only if the four quantities If , Ig, S1, and S2 are all zero.

Proof. Recall from the proof of Theorem 3.2 that If and Ig are nonpositive and S1 and S2 are
nonnegative. This implies that If + Ig−S1−S2 = 0 if and only if each term is zero. So, the desired
conclusion follows directly from Theorem 3.2.

Now, we prove Proposition 3.1.

Proof of Proposition 3.1. It follows from (3.4) that the left-hand side of (3.6) equals

LHS = f(xK) + ⟨u, xK⟩+ g(p)− ⟨u, p⟩ −
(
f(x) + ⟨uK , x⟩+ g(pK)− ⟨uK , pK⟩

)
− D0(x, u)

K + 1
(3.10)

To establish the identity (3.6), we simplify the four terms in (3.8) one by one. For If , we observe
that

1

K

K∑
k=1

〈
∇̃f(x̄K), xk − x̄K

〉
=

〈
∇̃f(x̄K),

1

K

K∑
k=1

xk − x̄K

〉
= 0.

Note that the f(xk) terms cancel out, so If simplifies to

If = f(xK)− f(x) +

〈
1

K

K∑
k=1

∇̃f(xk), x

〉
− 1

K

K∑
k=1

〈
∇̃f(xk), xk

〉
, (3.11)

in which the first two terms appear in the LHS in (3.10).
For Ig, we apply 1

K

∑K
k=1

〈
uk, pK

〉
=
〈
uK , pK

〉
and obtain

Ig = g(p)− g(pK)− ⟨u, p⟩+
〈
uK , pK

〉
+

〈
u,

1

K

K∑
k=1

pk

〉
− 1

K

K∑
k=1

〈
uk, pk

〉
. (3.12)

9



Then it follows from (3.1b), (3.2), and (3.7) that

pk = xk + α
(
∇̃f(xk) + uk

)
= xk + αvk. (3.13)

Substituting (3.13) back in (3.12) eliminates {pk}Kk=1 and thus Ig becomes

Ig = g(p)−g(pK)−⟨u, p⟩+
〈
uK , pK

〉
+
〈
u, x̄K

〉
+α

〈
u,

1

K

K∑
k=1

vk

〉
− 1

K

K∑
k=1

〈
uk, xk + αvk

〉
. (3.14)

Note that all terms appear in the LHS in (3.10) except the last two terms.
Similarly, for S1, we expand and re-organize the squares and obtain

S1 =
D0(x, u)

K + 1
−

〈
x0 + αu0 − x− αu,

1

K

K∑
k=1

vk

〉
+

α(K + 1)

2K2

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

.

Then, it is straightforward to verify that

(If + Ig − S1)− LHS

=

〈
1

K

K∑
k=1

∇̃f(xk), x

〉
− 1

K

K∑
k=1

〈
∇̃f(xk), xk

〉
+ α

〈
u,

1

K

K∑
k=1

vk

〉
− 1

K

K∑
k=1

〈
uk, xk + αvk

〉

+

〈
x0 + αu0 − x− αu,

1

K

K∑
k=1

vk

〉
− α(K + 1)

2K2

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

+ ⟨x, uK⟩

= − 1

K

K∑
k=1

〈
∇̃f(xk), xk

〉
− 1

K

K∑
k=1

〈
uk, xk + αvk

〉
+

1

K

K∑
k=1

〈
x0 + αu0, vk

〉
− α(K + 1)

2K2

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

,

(3.15)

where in the second equality we cancel out all the inner product terms involving x or u. Then, it
follows from (3.7) that the first two terms on the right-hand side of (3.15) simplifies to

− 1

K

K∑
k=1

〈
∇̃f(xk), xk

〉
− 1

K

K∑
k=1

〈
uk, xk + αvk

〉
= − 1

K

K∑
k=1

〈
∇̃f(xk) + uk, xk

〉
− 1

K

K∑
k=1

〈
vk, αuk

〉
= − 1

K

K∑
k=1

〈
vk, xk + αuk

〉
.

Substituting this into (3.15) and reorganizing, we obtain

(If + Ig − S1)− LHS =
1

K

K∑
k=1

〈
vk, x0 + αu0 − xk − αuk

〉
− α(K + 1)

2K2

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

. (3.16)

Now we eliminate xk. Applying (3.1b) recursively, we obtain

xk = xk−1 − α(uk − uk−1)− αvk = · · · = x0 + αu0 − αuk − α

k∑
l=1

vl.

10



Substituting it into (3.16) and using (3.7), we obtain

(If + Ig − S1)− LHS

=
α

K

K∑
k=1

〈
vk,

k∑
l=1

vl

〉
− α(K + 1)

2K2

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

=
α

K

K∑
k=1

k−1∑
l=1

〈
vk, vl

〉
+

α

K

K∑
k=1

∥∥∥vk∥∥∥2 − α(K + 1)

2K2

(
K∑
k=1

∥∥∥vk∥∥∥2 + 2
K∑
k=1

k−1∑
l=1

〈
vk, vl

〉)

=
α

2K2

(
−2

K∑
k=1

k−1∑
l=1

〈
vk, vl

〉
+ (K − 1)

K∑
k=1

∥∥∥vk∥∥∥2)

=
α

2K2

(
−2

K∑
k=1

k−1∑
l=1

〈
vk, vl

〉
+

K∑
k=1

k−1∑
l=1

(∥∥∥vk∥∥∥2 + ∥∥∥vl∥∥∥2))

=
α

2K2

K∑
k=1

k−1∑
l=1

∥∥∥vk − vl
∥∥∥2 = S2. (3.17)

The second-to-last equality follows from (K − 1)
∑K

k=1 ∥vk∥2 =
∑K

k=1

∑k−1
l=1 (∥vk∥2 + ∥vl∥2), which

can be verified by comparing the coefficients of each
∥∥vi∥∥2 terms. Therefore, If+Ig−S1−S2 = LHS,

which is our desired conclusion.

The tightness of (3.9) is now verified using a worst-case example motivated by Corollary 3.3.

Theorem 3.4 (Worst-case example for (DRS-gf)). Under the same setting as in Theorem 3.2, for
any K ∈ N+ and any α > 0, there exist CCP functions f and g and points x0, u0, x̃, ũ ∈ Rn such
that αD0(x̃, ũ) = 1 where D0(x̃, ũ) is defined in (2.15) and

L(xK , ũ)− L(x̃, uK) =
D0(x̃, ũ)

K + 1
.

Proof. Fix K ∈ N+ and α > 0. Let e0 ∈ Rn denote an arbitrary unit vector; that is, a vector with
one entry equal to one and all others equal to zero. Define x0 = e0/

√
2 ∈ Rn, u0 = x0/α ∈ Rn, and

x̃ = ũ = 0 ∈ Rn. Then, the initial condition holds: αD0(x̃, ũ) = ∥x0 − x̃∥2 + α2∥u0 − ũ∥2 = 1. Let

f(x) =

√
2

α(K + 1)
∥x∥, g(x) = 0,

(so g∗(y) = δ{0}(y)). Under this setup, (DRS-gf) generates the iterates

uk =

{
1
αx

0, k = 0

0, k ≥ 1,
xk+1 =

{
proxαf (2x

0), k = 0

proxαf (x
k), k ≥ 1.

(3.18)

The x-iteration is simply the proximal point method starting at 2x0. Then, from the definition of f ,
we have

proxαf (y) =

{(
∥y∥ −

√
2

K+1

)
y

∥y∥ , if ∥y∥ ≥
√
2

K+1

0, otherwise.

11



So, with x0 = e0/
√
2, we show that

xk =
√
2

(
1− k

K + 1

)
e0, k = 1, . . . ,K

by induction.

(i) When k = 1, it follows from
√
2

K+1 ≤
√
2 = ∥2x0∥ that

x1 =

(
∥2x0∥ −

√
2

K + 1

)
2x0

∥2x0∥
=

√
2

(
1− 1

K + 1

)
e0.

(ii) Assume that the induction hypothesis is true for k = m ≤ K − 1. Then, by the induction
hypothesis, we have √

2

K + 1
≤

√
2

(
1− m

K + 1

)
= ∥xm∥.

Thus,

xm+1 =

(
∥xm∥ −

√
2

K + 1

)
xm

∥xm∥
=

(
√
2

(
1− m

K + 1

)
−

√
2

K + 1

)
e0 =

√
2

(
1− m+ 1

K + 1

)
e0,

so we can conclude with the desired result.

Finally, invoking Corollary 3.3, it remains to prove that the four quantities (If , Ig,S1,S2) in (3.8)
are zero when x = x̃ and u = ũ. Observe that the points x1, x2, . . . , xK , xK , x̃ lie in a line and that
∂f(xk) is a singleton for all k = 1, 2, . . . ,K. It implies that If = 0. Next, we see that Ig = 0 since
g = 0, ũ = 0, and uk = 0 for all k = 1, . . . ,K. In addition, since vk = ∇̃f(xk) + uk = ∇̃f(xk) =√

2
α(K+1)e0 is a constant vector for all k = 1, . . . ,K, we obtain S2 = 0. Finally, from

α(K + 1)

2K

K∑
k=1

vk =
α(K + 1)

2K

K∑
k=1

√
2

α(K + 1)
e0 =

1√
2
e0 = x0 − x̃ = α(u0 − ũ),

we obtain S1 = 0. This completes the proof.

3.2 DRS-fg: worst-case rate and its tightness

We now proceed with the convergence analysis of (DRS-fg). Following the same approach as in
the beginning of Section 3.1, we reformulate (DRS-fg) as

xk+1 = xk − αuk − α∇̃f(xk+1) (3.19a)

uk+1 = uk + 1
α(2x

k+1 − xk)− 1
α∇̃g∗(uk+1), (3.19b)

and similarly we define

pk+1 := ∇̃g∗(uk+1) = xk+1 + (xk+1 − xk) + α(uk − uk+1). (3.20)

Similarly to (DRS-gf), we introduce an equality that enables us to derive the tight convergence
rate of (DRS-fg).

12



Proposition 3.5. Suppose f and g are CCP functions, and {(xk, uk)}k∈N is generated by (DRS-fg)
with stepsize α > 0 and initial points (x0, u0). Denote xK , uK , pK , p as in Proposition 3.1, and pk

as in (3.20). Then, for all K ∈ N+ and all x, u ∈ Rn, the equality

L(xK , u)− L(x, uK)− D0(x, u)

K + 1
= If + Ig − S1 − S2 (3.21)

holds, where D0(x, u) is defined in (2.15), vk is defined in (3.7), (If , Ig,S2) are defined in (3.8),
and S1 is redefined as

S1 :=
1

α(K + 1)

∥∥∥∥∥x0 − x− α(K + 1)

2K

K∑
k=1

vk

∥∥∥∥∥
2

+ α2

∥∥∥∥∥u0 − u+
K + 1

2K

K∑
k=1

vk

∥∥∥∥∥
2
 . (3.22)

We point out that (3.22) differs from S1 in Proposition 3.1 by only a sign in the second term.
This similarity suggests that the proof of Proposition 3.5 closely parallels that of Proposition 3.1.
Before presenting the proof, we emphasize that Proposition 3.5 also serves as the key to establishing
the tight convergence rate of (DRS-fg).

Theorem 3.6 (Convergence of (DRS-fg)). Suppose f and g are CCP functions, and {(xk, uk)}k∈N
is generated by (DRS-fg) with stepsize α > 0 and initial points (x0, u0). Then, for all K ∈ N+, the
ergodic iterates (xK , uK) defined in (3.5) satisfy

L(xK , u)− L(x, uK) ≤ D0(x, u)

K + 1
(3.23)

for all x ∈ dom f and all u ∈ dom g∗, where D0(x, u) is defined in (2.15).

Proof. It follows from (2.1) and the convexity of f and g that the two quantities If and Ig defined
in (3.22) are nonpositive. Moreover, the two quantities S1 and S2 are nonnegative since they are
sums of square terms. So, the desired conclusion (3.23) follows directly from Proposition 3.5.

A similar convergence result for the primal–dual hybrid gradient (PDHG) method, which in-
cludes (DRS-fg) as a special case, was established in [4] for the primal–dual gap function, but using
a different initial distance. However, the tightness of the convergence result in [4] was not proved.

Proposition 3.5 also provides an explicit if-and-only-if condition that guides the construction of
a worst-case example. We will leverage this corollary in the proof of Theorem 3.8.

Corollary 3.7. Let x ̸= x0 and u ̸= u0. Under the same setting as in Theorem 3.6, the inequal-
ity (3.23) holds with equality if and only if the four quantities If , Ig, S1, and S2 are all zero.

Proof. Recall from the proof of Theorem 3.6 that If and Ig are nonpositive and S1 and S2 are
nonnegative. This implies that If + Ig−S1−S2 = 0 if and only if each term is zero. So, the desired
conclusion follows directly from Proposition 3.5.

Now, we prove Proposition 3.5.

Proof of Proposition 3.5. Denote the left-hand side of (3.21) as LHS, as in (3.10). The first step in
organizing If and Ig can be done in the same way as in (3.11) and (3.12). Now we eliminate the

13



{pk}Kk=1 terms. We obtain from (3.19a) that xk − xk−1 = −αuk−1 − α∇̃f(xk). Substituting this
into (3.20) and recalling the definition of vk in (3.7) yields

pk = xk − α(∇̃f(xk) + uk) = xk − αvk. (3.24)

Note that the sign of vk is flipped compared to (3.13). Then, eliminating pk in Ig yields

Ig = g(p)− g(pK)− ⟨u, p⟩+
〈
uK , pK

〉
+
〈
u, xK

〉
− α

〈
u,

1

K

K∑
k=1

vk

〉
− 1

K

K∑
k=1

〈
uk, xk − αvk

〉
,

where all terms, except the last two, appear in the LHS. Then, proceeding with a similar calculation
to that used to obtain (3.15), but being careful with the signs of u, u0, and vk, we obtain:

(If + Ig − S1)− LHS

= − 1

K

K∑
k=1

〈
∇̃f(xk), xk

〉
− 1

K

K∑
k=1

〈
uk, xk − αvk

〉
+

1

K

K∑
k=1

〈
x0 − αu0, vk

〉
− α(K + 1)

2K2

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

.

(3.25)

Then, it follows from the definition of vk (3.7) that the first two terms on the right-hand side
of (3.25) simplifies to

− 1

K

K∑
k=1

〈
∇̃f(xk), xk

〉
− 1

K

K∑
k=1

〈
uk, xk − αvk

〉
= − 1

K

K∑
k=1

〈
∇̃f(xk) + uk, xk

〉
+

1

K

K∑
k=1

〈
vk, αuk

〉
=

1

K

K∑
k=1

〈
vk,−xk + αuk

〉
.

Substituting this into (3.25) gives

(If + Ig − S1)− LHS =
1

K

K∑
k=1

〈
vk, x0 − αu0 − xk + αuk

〉
− α(K + 1)

2K2

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

. (3.26)

Now we eliminate xk. Applying (3.19a) recursively, we obtain

xk = · · · = x0 − α
k−1∑
l=0

(
ul + ∇̃f(xl+1)

)
= x0 − αu0 − α∇̃f(xk)− α

k−1∑
l=1

vl.

Substituting it into (3.26) and using (3.7), and proceeding with the same calculation as in (3.17),
we obtain

(If + Ig − S1)− LHS =
α

K

K∑
k=1

〈
vk,

k∑
l=1

vl

〉
− α(K + 1)

2K2

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

= S2.

Therefore, If + Ig − S1 − S2 = LHS, which is our desired conclusion.

The tightness of (3.23) is now verified using a worst-case example motivated by Corollary 3.7.

14



Theorem 3.8 (Worst-case example for (DRS-fg)). Under the same setting as in Theorem 3.6, for
any K ∈ N+ and any α > 0, there exist CCP functions f and g and points x0, u0, x̃, ũ ∈ Rn such
that αD0(x̃, ũ) = 1 where D0(x̃, ũ) is defined in (2.15) and

L(xK , ũ)− L(x̃, uK) =
D0(x̃, ũ)

K + 1
.

Proof. Fix K ∈ N+ and α > 0. Let e0 ∈ Rn denote an arbitrary unit vector; that is, a vector with
one entry equal to one and all others equal to zero. Define x0 = e0/

√
2 ∈ Rn, u0 = −x0/α ∈ Rn,

and x̃ = ũ = 0 ∈ Rn. Then, the initial condition holds: αD0(x̃, ũ) = ∥x0 − x̃∥2 + α2∥u0 − ũ∥2 = 1.
Let

f(x) =

√
2

α(K + 1)
∥x∥ , g(x) = 0,

(so g∗(y) = δ{0}(y)). Under this setup, (DRS-fg) generates the iterates

uk =

{
− 1

αx
0, k = 0

0, k ≥ 1,
xk+1 =

{
proxαf (2x

0), k = 0

proxαf (x
k), k ≥ 1.

Comparison with (3.18) reveals that (DRS-fg) generates the same sequence {(xk, uk)} despite a
different initial point u0. Since the x-iterates are exactly the same as in the proof of Theorem 3.4,
the remainder of the proof readily extends from that of Theorem 3.4.

As discussed earlier, (DRS-fg) and (DRS-gf) are not equivalent, in the sense that they generally
produce different sequences of iterates. However, as shown in Theorem 3.4 and Theorem 3.8, their
tight convergence rates are identical (under the general convex setting). Moreover, the corresponding
worst-case examples are nearly the same, differing only in the sign of the initial point u0.

4 Convergence analysis of two variants of DYS

Section 3 derives an ergodic D/(K + 1) rate of convergence for both variants of DRS. Yet, the
known ergodic rate for both (DYS-gf) and (DYS-fg) is O(1/K) [20,29,31], of which the tightness
is not addressed. So in this section, we investigate the convergence rates of both DYS variants.
Interestingly, (DYS-gf) (originally proposed in [14]) has a slower rate than its special case (DRS-gf),
whereas the swapped version (DYS-fg) restores the D/(K + 1) rate as in (DRS-fg).

Again, our analysis uses the primal–dual gap function (2.10), which, from the definition of p
and pK in (3.3), can be reformulated as

L(x̄K , u)− L(x, ūK) = f(x̄K) + h(x̄K) + ⟨u, x̄K⟩ − ⟨u, p⟩+ g(p)

−
(
f(x) + h(x) + ⟨ūK , x⟩ − ⟨ūK , pK⟩+ g(pK)

)
.

(4.1)

4.1 Analysis of DYS-gf

In parallel to Section 3.1, we reformulate (DYS-gf) as

uk+1 = uk + 1
αx

k − 1
α∇̃g∗(uk+1) (4.2a)

pk+1 := ∇̃g∗(uk+1) = αuk + xk − αuk+1 (4.2b)

15



xk+1 = xk − α(2uk+1 − uk)− α∇h(pk+1)− α∇̃f(xk+1) (4.2c)

= pk+1 − αuk+1 − α∇h(pk+1)− α∇̃f(xk+1). (4.2d)

Not surprisingly, this iteration reduces to (3.1) when h = 0.
We now prove the core equality that provides the convergence proof. Remarkably, Proposition 4.1

does not reduce to Proposition 3.1 when h = 0.

Proposition 4.1. Suppose f , g, and h are CCP functions and h is L-smooth (with L > 0). Suppose
also that {(xk, uk)}k∈N is generated by (DYS-gf) with stepsize α = 1

L and initial points (x0, u0).
Denote pk as in (3.2), pK , p as in (3.3), and (xK , uK) as in (3.5). Then, for all K ∈ N+ and all
x, u ∈ Rn, the following equality holds

L(xK , u)− L(x, uK)− D0(x, u)

K
= If + Ig + Ih − Sh − S1 − S2, (4.3)

where D0(x, u) is defined in (2.15),

vk := ∇̃f(xk) + uk +∇h(pk), (4.4)

(If , Ig) are defined in (3.8), and

Ih :=
1

K

K∑
k=1

(
h(x̄K)− h(pk) +

〈
∇h(x̄K), pk − x̄K

〉
+

α

2

∥∥∥∇h(x̄K)−∇h(pk)
∥∥∥2)

+
1

K

K∑
k=1

(
h(pk)− h(x) +

〈
∇h(pk), x− pk

〉
+

α

2

∥∥∥∇h(x)−∇h(pk)
∥∥∥2)

Sh :=
α

2

∥∥∥∥∥∇h(x̄K) +
1

K

K∑
k=1

(
∇̃f(xk) + uk

)∥∥∥∥∥
2

+
α

2

∥∥∥∥∥∇h(x)− 1

K

K∑
k=1

∇h(pk)

∥∥∥∥∥
2

S1 :=
1

αK

(∥∥∥∥∥x0 − x− α

2

K∑
k=1

vk

∥∥∥∥∥
2

+ α2

∥∥∥∥∥u0 − u− 1

2

K∑
k=1

vk

∥∥∥∥∥
2)

S2 :=
α

2K2

K∑
k=1

k−1∑
l=1

(∥∥∥vk −∇h(pk)− (vl −∇h(pl))
∥∥∥2 + ∥∥∥∇h(pk)−∇h(pl)

∥∥∥2) .

In Proposition 4.1, the stepsize is set to α = 1
L for two main reasons. First, this choice simpli-

fies presentation of the analysis. The quantities (Ih,Sh,S1,S2) are already intricate owing to the
presence of the smooth term h; allowing for a broader range of stepsizes would further complicate
the presentation and proofs with limited additional insight. Second, unlike DRS, the stepsize α
in (DYS-gf) must be upper bounded by a function of L, and the exact admissible range remains
unclear. A recent paper [1] explores ways to enlarge this range, but the question is still open. Given
these considerations, we believe the simplified setting α = 1

L is sufficient for the purpose of this
paper.

Proof of Proposition 4.1. It follows from (4.2d) and (4.4) that

pk = xk + α(∇̃f(xk) + uk +∇h(pk)) = xk + αvk. (4.5)

16



Recalling (4.1), the left-hand side of (4.3) is

LHS = f(xK) + h(xK) + ⟨u, xK⟩+ g(p)− ⟨u, p⟩ −
(
f(x) + h(x) + ⟨uK , x⟩+ g(pK)− ⟨uK , pK⟩

)
− 1

αK

(
∥x0 − x∥2 + α2∥u0 − u∥2

)
.

With the same argument as in Proposition 3.1, If and Ig simplify to

If = f(xK)− f(x) +

〈
x,

1

K

K∑
k=1

∇̃f(xk)

〉
− 1

K

K∑
k=1

〈
∇̃f(xk), xk

〉
Ig = g(p)− g(pK)− ⟨u, p⟩+

〈
uK , pK

〉
+
〈
u, xK

〉
+ α

〈
u,

1

K

K∑
k=1

vk

〉
− 1

K

K∑
k=1

〈
uk, xk + αvk

〉
.

(4.6)
To regroup some of the terms, we define

Ĩh = Ih −
α

2K

K∑
k=1

∥∥∥∇h(x̄K)−∇h(pk)
∥∥∥2 − α

2K

K∑
k=1

∥∥∥∇h(x)−∇h(pk)
∥∥∥2

S̃h = Sh −
α

2K

K∑
k=1

∥∥∥∇h(x̄K)−∇h(pk)
∥∥∥2 − α

2K

K∑
k=1

∥∥∥∇h(x)−∇h(pk)
∥∥∥2 .

We can easily verify that Ĩh − S̃h = Ih − Sh. Next, we simplify Ĩh, S̃h, and S1 one by one.
For Ĩh, it follows from (4.5) and xK = 1

K

∑K
k=1 x

k that

1

K

K∑
k=1

〈
∇h(x̄K), pk − x̄K

〉
=

1

K

K∑
k=1

〈
∇h(x̄K), xk + αvk − x̄K

〉
=

α

K

K∑
k=1

〈
∇h(x̄K), vk

〉
.

Applying (4.5), we can verify that Ĩh simplifies to

Ĩh = h(xK)− h(x) +
α

K

K∑
k=1

〈
∇h(x̄K), vk

〉
+

1

K

K∑
k=1

〈
∇h(pk), x− xk − αvk

〉
, (4.7)

where the first two terms appear in the LHS.
Similarly, we have for S̃h that

S̃h = − α

2K

K∑
k=1

∥∥∥∇h(x)−∇h(pk)
∥∥∥2 + α

2

∥∥∥∥∥∇h(x)− 1

K

K∑
k=1

∇h(pk)

∥∥∥∥∥
2

− α

2K

K∑
k=1

∥∥∥∇h(x̄K)−∇h(pk)
∥∥∥2 + α

2

∥∥∥∥∥∇h(x̄K) +
1

K

K∑
k=1

(
∇̃f(xk) + uk

)∥∥∥∥∥
2

= − α

2K

K∑
k=1

∥∥∥∇h(pk)
∥∥∥2 + α

2

∥∥∥∥∥ 1

K

K∑
k=1

∇h(pk)

∥∥∥∥∥
2

− α

2K

K∑
k=1

∥∥∥∇h(x̄K)−∇h(pk)
∥∥∥2 + α

2

∥∥∥∥∥∇h(x̄K) +
1

K

K∑
k=1

(
∇̃f(xk) + uk

)∥∥∥∥∥
2

. (4.8)

17



The last two terms on the right-hand side of (4.8) can be further simplified to

− α

2K

K∑
k=1

∥∥∥∇h(x̄K)−∇h(pk)
∥∥∥2 + α

2

∥∥∥∥∥∇h(x̄K) +
1

K

K∑
k=1

(
∇̃f(xk) + uk

)∥∥∥∥∥
2

= − α

2K

K∑
k=1

∥∥∥∇h(pk)
∥∥∥2 + α

K

K∑
k=1

〈
∇h(x̄K),∇h(pk) + ∇̃f(xk) + uk

〉
+

α

2

∥∥∥∥∥ 1

K

K∑
k=1

(
∇̃f(xk) + uk

)∥∥∥∥∥
2

= − α

2K

K∑
k=1

∥∥∥∇h(pk)
∥∥∥2 + α

K

K∑
k=1

〈
∇h(x̄K), vk

〉
+

α

2

∥∥∥∥∥ 1

K

K∑
k=1

(
∇̃f(xk) + uk

)∥∥∥∥∥
2

.

Substituting it back to (4.8) gives

S̃h = − α

K

K∑
k=1

∥∥∥∇h(pk)
∥∥∥2 + α

2

∥∥∥∥∥ 1

K

K∑
k=1

(
∇̃f(xk) + uk

)∥∥∥∥∥
2

+
α

2

∥∥∥∥∥ 1

K

K∑
k=1

∇h(pk)

∥∥∥∥∥
2

+
α

K

K∑
k=1

〈
∇h(x̄K), vk

〉
.

(4.9)
Next, S1 can be simplified to

S1 =
1

αK

(
∥x0 − x∥2 + α2∥u0 − u∥2

)
−

〈
x0 + αu0 − x− αu,

1

K

K∑
k=1

vk

〉
+

α

2K

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

. (4.10)

Combining (4.7), (4.9) and (4.10) yields

(If + Ig + Ih − Sh − S1)− LHS

= (If + Ig + Ĩh − S̃h − S1)− LHS

=

〈
x,

1

K

K∑
k=1

∇̃f(xk)

〉
− 1

K

K∑
k=1

〈
∇̃f(xk), xk

〉
+ α

〈
u,

1

K

K∑
k=1

vk

〉
− 1

K

K∑
k=1

〈
uk, xk + αvk

〉

+
1

K

K∑
k=1

〈
∇h(pk), x− xk − αvk

〉
+

α

K

K∑
k=1

∥∥∥∇h(pk)
∥∥∥2 − α

2

∥∥∥∥∥ 1

K

K∑
k=1

(
∇̃f(xk) + uk

)∥∥∥∥∥
2

− α

2

∥∥∥∥∥ 1

K

K∑
k=1

∇h(pk)

∥∥∥∥∥
2

+

〈
x0 + αu0 − x− αu,

1

K

K∑
k=1

vk

〉
− α

2K

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

+ ⟨ūK , x⟩

= − 1

K

K∑
k=1

〈
∇̃f(xk), xk

〉
− 1

K

K∑
k=1

〈
uk +∇h(pk), xk + αvk

〉
+

α

K

K∑
k=1

∥∥∥∇h(pk)
∥∥∥2 − α

2K

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

− α

2

∥∥∥∥∥ 1

K

K∑
k=1

(
∇̃f(xk) + uk

)∥∥∥∥∥
2

− α

2

∥∥∥∥∥ 1

K

K∑
k=1

∇h(pk)

∥∥∥∥∥
2

+

〈
x0 + αu0,

1

K

K∑
k=1

vk

〉
. (4.11)

Note that in the last equality, inner product terms with x and u are canceled out by using (4.4).
Again, using (4.4), the first two terms on the right-hand side of (4.11) become

− 1

K

K∑
k=1

〈
∇̃f(xk), xk

〉
− 1

K

K∑
k=1

〈
uk +∇h(pk), xk + αvk

〉

18



= − 1

K

K∑
k=1

〈
∇̃f(xk) + uk +∇h(pk), xk

〉
− α

K

K∑
k=1

〈
vk, uk +∇h(pk)

〉
=

1

K

K∑
k=1

〈
vk,−xk − α

(
uk +∇h(pk)

)〉
. (4.12)

Substituting it back to (4.11) and reorganizing, we obtain

(If + Ig + Ih − Sh − S1)− LHS

=
1

K

K∑
k=1

〈
vk, x0 + αu0 − xk − α

(
uk +∇h(pk)

)〉
+

α

K

K∑
k=1

∥∥∥∇h(pk)
∥∥∥2

− α

2K2

∥∥∥∥∥
K∑
k=1

(
vk −∇h(pk)

)∥∥∥∥∥
2

− α

2K2

∥∥∥∥∥
K∑
k=1

∇h(pk)

∥∥∥∥∥
2

− α

2K

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

. (4.13)

Now, we eliminate xk in the first term on the right-hand side of (4.13). Applying (4.2c) and (4.4)
recursively gives

xk = xk−1 − α
(
uk − uk−1

)
− αvk = · · · = x0 + αu0 − αuk − α

k∑
l=1

vl.

Substituting it back to (4.13) gives

(If + Ig + Ih − Sh − S1)− LHS

=
α

K

K∑
k=1

k∑
l=1

〈
vk, vl

〉
− α

K

K∑
k=1

〈
vk,∇h(pk)

〉
− α

2K2

∥∥∥∥∥
K∑
k=1

(
vk −∇h(pk)

)∥∥∥∥∥
2

− α

2K

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

+
α

2K

K∑
k=1

∥∥∥∇h(pk)
∥∥∥2 + α

2K

K∑
k=1

∥∥∥∇h(pk)
∥∥∥2 − α

2K2

∥∥∥∥∥
K∑
k=1

∇h(pk)

∥∥∥∥∥
2

. (4.14)

Finally, observe that for any {ak}k∈N ⊂ Rn, we have

K∑
k=1

∥∥∥ak∥∥∥2 − 1

K

∥∥∥∥∥
K∑
k=1

ak

∥∥∥∥∥
2

=
1

K

K∑
k=1

(K − 1)
∥∥∥ak∥∥∥2 − 1

K

K∑
k=1

k−1∑
l=1

2
〈
ak, al

〉
=

1

K

K∑
k=1

k−1∑
l=1

∥∥∥ak − al
∥∥∥2 ,

(4.15)
and thus

α

2K

K∑
k=1

∥∥∥∇h(pk)
∥∥∥2 − α

2K2

∥∥∥∥∥
K∑
k=1

∇h(pk)

∥∥∥∥∥
2

=
α

2K2

K∑
k=1

k−1∑
l=1

∥∥∥∇h(pk)−∇h(pl)
∥∥∥2 .

Next, with

α

K

K∑
k=1

k∑
l=1

〈
vk, vl

〉
− α

2K

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

=
α

2K

K∑
k=1

∥∥∥vk∥∥∥2 ,
19



the first five terms on the right-hand side of (4.14) become

α

K

K∑
k=1

k∑
l=1

〈
vk, vl

〉
− α

K

K∑
k=1

〈
vk,∇h(pk)

〉
− α

2K2

∥∥∥∥∥
K∑
k=1

(
vk −∇h(pk)

)∥∥∥∥∥
2

− α

2K

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

+
α

2K

K∑
k=1

∥∥∥∇h(pk)
∥∥∥2

=
α

2K

K∑
k=1

∥∥∥vk∥∥∥2 − α

K

K∑
k=1

〈
vk,∇h(pk)

〉
+

α

2K

K∑
k=1

∥∥∥∇h(pk)
∥∥∥2 − α

2K2

∥∥∥∥∥
K∑
k=1

(
vk −∇h(pk)

)∥∥∥∥∥
2

=
α

2K

K∑
k=1

∥∥∥vk −∇h(pk)
∥∥∥2 − α

2K2

∥∥∥∥∥
K∑
k=1

(
vk −∇h(pk)

)∥∥∥∥∥
2

=
α

2K2

K∑
k=1

k−1∑
l=1

∥∥∥vk −∇h(pk)− (vl −∇h(pl))
∥∥∥2 ,

where the last equation follows from (4.15). Finally, combining with (4.14) yields

(If + Ig + Ih − Sh − S1)− LHS

=
α

2K2

K∑
k=1

k−1∑
l=1

(∥∥∥vk −∇h(pk)− (vl −∇h(pl))
∥∥∥2 + ∥∥∥∇h(pk)−∇h(pl)

∥∥∥2) = S2.

Therefore, LHS = If + Ig + Ih − Sh − S1 − S2, and we conclude the desired result.

An ergodic D/K rate of convergence for (DYS-gf) follows immediately from Proposition 4.1.

Theorem 4.2 (Convergence of (DYS-gf)). Suppose f , g, and h are CCP functions and h is L-
smooth (with L > 0). Suppose {(xk, uk)}k∈N is generated by (DYS-gf) with stepsize α = 1

L and
initial points (x0, u0). Then, for all K ∈ N+, the ergodic iterates (xK , uK) defined in (3.5) satisfy

L(xK , u)− L(x, uK) ≤ D0(x, u)

K
(4.16)

for all x ∈ dom f and all u ∈ dom g∗, where D0(x, u) is defined in (2.15). Moreover, (4.16) holds
with equality if and only if If , Ig, Ih,Sh,S1 and S2 are all zero.

Proof. If and Ig are nonpositive since f and g are convex. It then follows from the convexity and
L-smoothness of h that Ih is nonpositive. Moreover, Sh, S1 and S2 are nonnegative as they are sum
of squares. Hence, we conclude (4.16) from Proposition 4.1. The second conclusion is an immediate
consequence of Proposition 4.1 and the facts If , Ig, Ih ≤ 0 and Sh,S1,S2 ≥ 0.

The presented rate for (DYS-gf) is slower than that for its special case (DRS-gf) (see Theo-
rem 3.2). In the next subsection, we showcase a simple example for which (DYS-gf) is slower than
D/(K + 1) and examine how the smooth term h slows down convergence.

20



4.2 DYS-gf fails to achieve a D/(K + 1) rate

One may notice the difference in the rate (4.16) for (DYS-gf) and that (3.9) for (DRS-gf). It is
natural to ask whether (DYS-gf) can attain the D/(K +1) rate as its special case (DRS-gf). This
section provides a negative answer by presenting a simple example in which (DYS-gf) converges
more slowerly. Although the example does not match the exact D/K rate established in Theo-
rem 4.2, it effectively demonstrates that the rate of (DYS-gf) can indeed be worse than D/(K+1).

Theorem 4.3 (Bad example for (DYS-gf)). Under the same setting as in Theorem 4.2, for any
K ∈ N+ and any α > 0, there exist CCP functions f and g, 1

α -smooth convex function h, and points
x0, u0, x̃, ũ ∈ Rn such that αD0(x̃, ũ) = 1 where D0(x̃, ũ) is defined in (2.15) and

L(xK , ũ)− L(x̃, uK) >
D0(x̃, ũ)

K + 1
.

Proof. Fix K ∈ N+ and α > 0. Again, define x0 = e0/
√
2, u0 = x0/α, and x̃ = ũ = 0. (Recall e0 ∈

Rn denotes an arbitrary unit vector, so the example holds for any dimension n.) It is straightforward
to check that αD0(x̃, ũ) = ∥x0 − x̃∥2 + α2∥u0 − ũ∥2 = 1. We also denote

ηK :=

√
2(K − 1)

K2
.

Consider
f(x) =

(K − 1)ηK
α

∥x∥, g∗(y) = ηK∥y∥, h(x) =
1

2α
∥x∥2.

Thus, we have

proxαf (x) =

{
(∥x∥ − (K − 1)ηK) x

∥x∥ , if ∥x∥ ≥ (K − 1)ηK

0, otherwise

proxα−1g∗(y) =

{(
∥y∥ − ηK

α

) y
∥y∥ , if ∥y∥ ≥ ηK

α

0, otherwise.

Then, we show by induction that

xk =

{
−(

√
2−KηK)e0, if k = 1

0, if k = 2, 3, . . . ,K,
uk =

{
1
α(
√
2− ηK)e0, if k = 1

1
α(K − k)ηKe0, if k = 2, 3, . . . ,K.

(4.17)

(i) When k = 1, recalling the definition (DYS-gf) and (4.2b), it is straightforward to verify that

u1 = proxα−1g∗(u
0 + 1

αx
0) = proxα−1g∗(

√
2

α e0) =
1
α

(√
2− ηK

)
e0

p1 = α(u0 + 1
αx

0)− αu1 = ηKe0

x1 = proxαf (p
1 − α∇h(p1)− αu1) = proxαf (−(

√
2− ηK)e0) = −(

√
2−KηK)e0,

where we used the fact ∇h(x) = 1
αx for all x ∈ Rn, − −αu1

∥−αu1∥ = e0, and

√
2− ηK =

(
1− K − 1

K2

)√
2 =

K2 −K + 1

K2

√
2 >

(K − 1)2

K2

√
2 = (K − 1)ηK .

21



Similarly, when k = 2, we have

u2 = proxα−1g∗(u
1 + 1

αx
1) = proxα−1g∗(

1
α(K − 1)ηKe0) =

1
α(K − 2)ηKe0

p2 = α(u1 + 1
αx

1)− αu2 = ηKe0

x2 = proxαf (p
2 − α∇h(p2)− αu2) = proxαf (−αu2) = 0,

where the last equality follows from the fact ∥ − αu2∥ = (K − 2)ηK < (K − 1)ηK .

(ii) Assume that the induction hypothesis is true for k = m ≤ K − 1. Then, by the induction
hypothesis, we have

∥um + 1
αx

m∥ ≥ ηK
α , ∥ − αum∥ ≤ (K − 1)ηK .

Thus, we have xm+1 = 0 and

um+1 = proxα−1g∗(u
m + 1

αx
m) = 1

α(K −m− 1)ηKe0.

So the expression (4.17) holds for k = m+ 1 ≤ K.

From (4.17), the ergodic sequence can be written as

xK =
1

K
x1 = − 1

K

(√
2−KηK

)
e0 = − 1

K

(
1− K − 1

K

)√
2e0 = −

√
2

K2
e0,

uK =
1

αK

((√
2− ηK

)
+

K∑
k=2

ηK(K − k)

)
e0 =

√
2(K2 − 2K + 3)

2αK2
e0,

(4.18)

where the last equality follows from

√
2− ηK +

K∑
k=2

(K − k)ηK =
√
2 +

(
−1 +

K−2∑
k=1

k

)
ηK =

√
2 +

(
−1 +

(K − 1)(K − 2)

2

)
K − 1

K2

√
2

=
(K − 3)(K − 1)

2K

√
2 +

√
2 =

√
2(K2 − 2K + 3)

2K
.

Finally, substituting (4.18) and x̃ = ũ = 0 into the performance metric (2.10) yields

L(xK , ũ)− L(x̃, uK) = f(xK) + h(xK) + ⟨ũ, xK⟩ − g∗(ũ)− (f(x̃) + h(x̃) + ⟨uK , x̃⟩ − g∗(uK))

= f(xK) + h(xK) + g∗(uK)

=
(K − 1)ηK

α

∥∥∥∥− 1

K2

√
2e0

∥∥∥∥+ 1

2α

∥∥∥∥∥−
√
2

K2
e0

∥∥∥∥∥
2

+ ηK

∥∥∥∥∥
√
2

2αK2

(
K2 − 2K + 3

)
e0

∥∥∥∥∥
=

1

α

(K − 1)2

K2

√
2

(√
2

K2

)
+

1

2α

(√
2

K2

)2

+
K − 1

K2

1

αK2

(
K2 − 2K + 3

)
=

1

αK4

(
2(K2 − 2K + 1) + 1 + (K − 1)

(
K2 − 2K + 3

))
=

1

αK4

(
2K2 − 4K + 2 + 1 +K3 − 3K2 + 5K − 3

)
=

K2 −K + 1

αK3
.

Finally, the desired result follows from

K2 −K + 1

K3
>

1

K + 1
⇐⇒ K3 + 1 = (K + 1)(K2 −K + 1) > K3.

22



Note that the rate K2−K+1
αK3 equals 1

αK when K = 1; that is, the bound in Theorem 4.2 is tight
at K = 1. We conjecture that the rate in Theorem 4.2 is tight in general, but leave a formal proof
as an open question for future work.

4.3 DYS-fg: restoring the D/(K + 1) rate by swapping f and g

We proceed to analyze (DYS-fg). As before, we reformulate (DYS-fg) as

xk = xk−1 − α(uk−1 +∇h(xk−1))− α∇̃f(xk) (4.19a)

pk = xk + (xk − xk−1) + α((∇h(xk−1) + uk−1)− (∇h(xk) + uk)) ∈ ∂g∗(uk). (4.19b)

We now establish the tight convergence rate of (DYS-fg). As in the case of (DRS-fg), we prove an
equality that immediately yields the convergence of (DYS-fg). Although Proposition 4.4 reduces
to Proposition 3.5 when h = 0, its proof is more involved because it must account for the additional
smooth function h.

Proposition 4.4. Suppose f , g, and h are CCP functions and h is L-smooth (with L > 0). Suppose
also that {(xk, uk)}k∈N is generated by (DYS-fg) with stepsize α = 1

L and initial points (x0, u0).
Denote xK , uK , pK , p as in Proposition 4.1, and pk as in (4.19b). Then, for all K ∈ N+ and all
x, u ∈ Rn, the following equality holds

L(xK , u)− L(x, uK)− D0(x, u)

K + 1
= If + Ig + Ih − S1 − S2 − Sh, (4.20)

where D0(x, u) is defined in (2.15),

vk = ∇̃f(xk) + uk +∇h(xk), (4.21)

(If , Ig) are defined in Proposition 4.1, and

Ih :=
1

K

K∑
k=1

(
h(xK)− h(xk) +

〈
∇h(xK), xk − xK

〉
+

α

2

∥∥∥∇h(xk)−∇h(xK)
∥∥∥2)

+
K − 1

K(K + 1)

K∑
k=1

(
h(xk)− h(x) +

〈
∇h(xk), x− xk

〉
+

α

2

∥∥∥∇h(xk)−∇h(x)
∥∥∥2)

+
2

K + 1

(
h(x0)− h(x) +

〈
∇h(x0), x− x0

〉
+

α

2

∥∥∇h(x0)−∇h (x)
∥∥2)

+
2

K(K + 1)

K∑
k=1

(
h(xk)− h(x0) +

〈
∇h(xk), x0 − xk

〉
+

α

2

∥∥∥∇h(xk)−∇h(x0)
∥∥∥2)

Sh :=
α

2

∥∥∥∥∥∇h(x̄K)− 1

K

K∑
k=1

∇h(xk)

∥∥∥∥∥
2

+
α(K − 1)

2(K + 1)

∥∥∥∥∥∇h(x)− 1

K

K∑
k=1

∇h(xk)

∥∥∥∥∥
2

S1 :=
1

K + 1

(
1

α

∥∥∥∥∥x0 − x− α(K + 1)

2K

K∑
k=1

vk − α

(
∇h(x0)− 1

K

K∑
k=1

∇h(xk)

)∥∥∥∥∥
2

+ α

∥∥∥∥∥u0 − u+
K + 1

2K

K∑
k=1

(
∇̃f(xk) + uk +∇h(xk)

)∥∥∥∥∥
2

+
α

K + 1

∥∥∇h(x0)−∇h(x)
∥∥2)

23



S2 :=
α

2K2

K∑
k=1

k−1∑
l=1

(∥∥∥vk −∇h(xk)− (vl −∇h(xl))
∥∥∥2 + ∥∥∥∇h(xk)−∇h(xl)

∥∥∥2) .

Proof. We repeat some arguments done in Proposition 3.5. First, we verify that pk in (4.19b) can
still be written as in (3.24). From (4.19a) we obtain xk −xk−1 = −α(uk−1+∇h(xk−1))−α∇̃f(xk).
Substituting it into (4.19b) yields

pk = xk − α(∇̃f(xk) + uk +∇h(xk)) = xk − αvk.

With the same argument of Proposition 3.5, If and Ig simplify to

If = f(xK)− f(x) +

〈
x,

1

K

K∑
k=1

∇̃f(xk)

〉
− 1

K

K∑
k=1

〈
∇̃f(xk), xk

〉
Ig = g(p)− g(pK)− ⟨u, p⟩+

〈
uK , pK

〉
+
〈
u, xK

〉
− α

〈
u,

1

K

K∑
k=1

vk

〉
− 1

K

K∑
k=1

〈
uk, xk − αvk

〉
,

which are restated here for later reference.
Now, to regroup some of the terms, we define

Ĩh = Ih −
α

2K

K∑
k=1

∥∥∥∇h(xK)−∇h(xk)
∥∥∥2 − α(K − 1)

2K(K + 1)

K∑
k=1

∥∥∥∇h(x)−∇h(xk)
∥∥∥2

− α

K + 1

∥∥∇h(x0)−∇h(x)
∥∥2 − α

K(K + 1)

K∑
k=1

∥∥∥∇h(x0)−∇h(xk)
∥∥∥2

S̃h = Sh −
α

2K

K∑
k=1

∥∥∥∇h(xK)−∇h(xk)
∥∥∥2 − α(K − 1)

2K(K + 1)

K∑
k=1

∥∥∥∇h(x)−∇h(xk)
∥∥∥2

S̃1 = S1 −
α

K + 1

∥∥∇h(x0)−∇h(x)
∥∥2 − α

K(K + 1)

K∑
k=1

∥∥∥∇h(x0)−∇h(xk)
∥∥∥2 .

Moreover, the terms h(xk), h(x0), and ⟨∇h(xk), xk − xk⟩ cancel out, and thus Ĩh simplifies to

Ĩh = h(xK)− h(x) +
2

K(K + 1)

〈
x0,

K∑
k=1

∇h(xk)

〉
− 1

K

K∑
k=1

〈
∇h(xk), xk

〉
+

K − 1

K(K + 1)

K∑
k=1

〈
∇h(xk), x

〉
+

2

K + 1

〈
∇h(x0), x− x0

〉
,

where the first two terms appear in the left-hand side of (4.1).
For S̃h, straightforward calculations show that

S̃h =
α

2

∥∥∥∥∥∇h(x̄K)− 1

K

K∑
k=1

∇h(xk)

∥∥∥∥∥
2

− α

2K

K∑
k=1

∥∥∥∇h(xK)−∇h(xk)
∥∥∥2

24



+
α(K − 1)

2(K + 1)

∥∥∥∥∥∇h(x)− 1

K

K∑
k=1

∇h(xk)

∥∥∥∥∥
2

− α(K − 1)

2K(K + 1)

K∑
k=1

∥∥∥∇h(x)−∇h(xk)
∥∥∥2

= − α

2K

K∑
k=1

∥∥∥∇h(xk)
∥∥∥2 + α

2

∥∥∥∥∥ 1

K

K∑
k=1

∇h(xk)

∥∥∥∥∥
2

+
α(K − 1)

2(K + 1)

∥∥∥∥∥∇h(x)− 1

K

K∑
k=1

∇h(xk)

∥∥∥∥∥
2

− α(K − 1)

2K(K + 1)

K∑
k=1

∥∥∥∇h(x)−∇h(xk)
∥∥∥2

= − α

K + 1

K∑
k=1

∥∥∥∇h(xk)
∥∥∥2 + αK

K + 1

∥∥∥∥∥ 1

K

K∑
k=1

∇h(xk)

∥∥∥∥∥
2

.

The first equality follows from the definition of S̃h. In the second equality, we cancel out all the
∇h(xK) terms, and the last equality cancels out the ∇h(x) terms.

Next, we move on to S̃1. Observe that the sum of the first and the last term of S̃1 can be
rewritten as:

1

α(K + 1)

∥∥∥∥∥x0 − x− α(K + 1)

2K

K∑
k=1

vk − α

(
∇h(x0)− 1

K

K∑
k=1

∇h(xk)

)∥∥∥∥∥
2

− α

K(K + 1)

K∑
k=1

∥∥∥∇h(x0)−∇h(xk)
∥∥∥2

=
1

α(K + 1)

∥∥∥∥∥x0 − x− α
K + 1

2K

K∑
k=1

vk

∥∥∥∥∥
2

− 2

K + 1

〈
x0 − x,∇h(x0)

〉
+

2

K(K + 1)

〈
x0 − x,

K∑
k=1

∇h(xk)

〉
+

〈
1

K

K∑
k=1

vk, α∇h(x0)

〉
− α

K2

〈
K∑
k=1

vk,
K∑
k=1

∇h(xk)

〉

− α

K(K + 1)

K∑
k=1

∥∥∥∇h(xk)
∥∥∥2 + α

K + 1

∥∥∥∥∥ 1

K

K∑
k=1

∇h(xk)

∥∥∥∥∥
2

=
1

α(K + 1)

∥∥x0 − x
∥∥2 −〈x0 − α∇h(x0)− x,

1

K

K∑
k=1

vk

〉
+

α(K + 1)

4K2

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

− 2

K + 1

〈
x0 − x,∇h(x0)

〉
+

2

K(K + 1)

〈
x0 − x,

K∑
k=1

∇h(xk)

〉
− α

K2

K∑
k=1

K∑
l=1

〈
vl,∇h(xk)

〉

− α

K(K + 1)

K∑
k=1

∥∥∥∇h(xk)
∥∥∥2 + α

K + 1

∥∥∥∥∥ 1

K

K∑
k=1

∇h(xk)

∥∥∥∥∥
2

.

In the first equality, we expand the two squared terms and distribute the cross terms. In the second
equality, we expand the first square and gather the inner product terms with

∑K
k=1 v

k. Similarly,
the second term in S̃1 can be rewritten as

α

K + 1

∥∥∥∥∥u0 − u+
K + 1

2K

K∑
k=1

vk

∥∥∥∥∥
2

25



=
α

K + 1

∥∥u0 − u
∥∥2 + α

〈
u0 − u,

1

K

K∑
k=1

vk

〉
+

α(K + 1)

4K2

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

.

Now, gathering the observations, we denote by LHS the left-hand side of (4.20) and obtain

(If + Ig + Ih − Sh − S1)− LHS

=

〈
x,

1

K

K∑
k=1

∇̃f(xk)

〉
− 1

K

K∑
k=1

〈
∇̃f(xk), xk

〉
− α

〈
u,

1

K

K∑
k=1

vk

〉
− 1

K

K∑
k=1

〈
uk, xk − αvk

〉
+

2

K(K + 1)

〈
x0,

K∑
k=1

∇h(xk)

〉
+

K − 1

K(K + 1)

K∑
k=1

〈
∇h(xk), x

〉
− 1

K

K∑
k=1

〈
∇h(xk), xk

〉

+
α

K

K∑
k=1

∥∥∥∇h(xk)
∥∥∥2 − α

∥∥∥∥∥ 1

K

K∑
k=1

∇h(xk)

∥∥∥∥∥
2

+

〈
x0 − α

(
u0 +∇h(x0)

)
,
1

K

K∑
k=1

vk

〉

−

〈
x− αu,

1

K

K∑
k=1

vk

〉
− α(K + 1)

2K2

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

− 2

K(K + 1)

〈
x0 − x,

K∑
k=1

∇h(xk)

〉

+
α

K2

K∑
k=1

K∑
l=1

〈
∇h(xk), vl

〉
+ ⟨x, uK⟩

= − 1

K

K∑
k=1

〈
∇̃f(xk), xk

〉
− 1

K

K∑
k=1

〈
uk, xk − αvk

〉
− 1

K

K∑
k=1

〈
∇h(xk), xk

〉

+
α

K

K∑
k=1

∥∥∥∇h(xk)
∥∥∥2 − α

∥∥∥∥∥ 1

K

K∑
k=1

∇h(xk)

∥∥∥∥∥
2

+

〈
x0 − α

(
u0 +∇h(x0)

)
,
1

K

K∑
k=1

vk

〉

− α(K + 1)

2K2

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

+
α

K2

K∑
k=1

K∑
l=1

〈
∇h(xk), vl

〉
, (4.22)

In the second equality, the terms 2
K+1⟨∇h(x0), x− x0⟩, 2

K(K+1)⟨x
0,
∑K

k=1∇h(xk)⟩ and the inner
product terms with x and u are canceled out. As a detail for the inner product terms with x, they
are canceled out since

0 =

〈
x,

1

K

K∑
k=1

∇̃f(xk)

〉
+

K − 1

K(K + 1)

K∑
k=1

〈
∇h(xk), x

〉
−

〈
x,

1

K

K∑
k=1

vk

〉

+
2

K(K + 1)

〈
x,

K∑
k=1

∇h(xk)

〉
+
〈
x, uK

〉
,

where we also use the definition of vk (4.21). Again, it follows from (4.21) that the first three terms
on the right-hand side of (4.22) is

− 1

K

K∑
k=1

〈
∇̃f(xk), xk

〉
− 1

K

K∑
k=1

〈
uk, xk − αvk

〉
− 1

K

K∑
k=1

〈
∇h(xk), xk

〉

26



= − 1

K

K∑
k=1

〈
∇̃f(xk) + uk +∇h(xk), xk

〉
+

1

K

K∑
k=1

〈
vk, αuk

〉
=

1

K

K∑
k=1

〈
vk,−xk + αuk

〉
. (4.23)

Substituting (4.23) back to (4.22) gives

(If + Ig + Ih − Sh − S1)− LHS

=
1

K

K∑
k=1

〈
vk, x0 − α

(
u0 +∇h(x0)

)
− xk + αuk

〉
+

α

K

K∑
k=1

∥∥∥∇h(xk)
∥∥∥2

− α

K2

∥∥∥∥∥
K∑
k=1

∇h(xk)

∥∥∥∥∥
2

− α(K + 1)

2K2

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

+
α

K2

K∑
k=1

K∑
l=1

〈
∇h(xk), vl

〉
. (4.24)

Now, we eliminate xk. Applying (4.19a) recursively, we obtain

xk = · · · = x0 − α

k−1∑
l=0

(
ul +∇h(xl) + ∇̃f(xl+1)

)
= x0 − α

(
u0 +∇h(x0)

)
− α∇̃f(xk)− α

k−1∑
l=1

vl.

Substituting it back to (4.24) gives

(If + Ig + Ih − Sh − S1)− LHS

=
α

K

K∑
k=1

k∑
l=1

〈
vk, vl

〉
− α(K + 1)

2K2

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

+
α

K

K∑
k=1

∥∥∥∇h(xk)
∥∥∥2

− α

K

K∑
k=1

〈
vk,∇h(xk)

〉
− α

K2

∥∥∥∥∥
K∑
k=1

∇h(xk)

∥∥∥∥∥
2

+
α

K2

K∑
k=1

K∑
l=1

〈
∇h(xk), vl

〉
. (4.25)

Finally, recalling (3.17) we know

α

K

K∑
k=1

k∑
l=1

〈
vk, vl

〉
− α(K + 1)

2K2

∥∥∥∥∥
K∑
k=1

vk

∥∥∥∥∥
2

=
α

2K2

K∑
k=1

k−1∑
l=1

∥∥∥vk − vl
∥∥∥2 ,

and observe that

α

K

K∑
k=1

∥∥∥∇h(xk)
∥∥∥2 − α

K

K∑
k=1

〈
vk,∇h(xk)

〉
− α

K2

∥∥∥∥∥
K∑
k=1

∇h(xk)

∥∥∥∥∥
2

+
α

K2

K∑
k=1

K∑
l=1

〈
∇h(xk), vl

〉
=

α

K2

(
K∑
k=1

K∑
l=1

∥∥∥∇h(xk)
∥∥∥2 − K∑

k=1

K∑
l=1

〈
∇h(xk), vk

〉
−

K∑
k=1

K∑
l=1

〈
∇h(xk),∇h(xl)

〉
+

K∑
k=1

K∑
l=1

〈
∇h(xk), vl

〉)

=
α

K2

K∑
k=1

K∑
l=1

〈
∇h(xk),∇h(xk)− vk −∇h(xl) + vl

〉
=

α

2K2

K∑
k=1

K∑
l=1

〈
∇h(xk),∇h(xk)− vk −∇h(xl) + vl

〉

27



+
α

2K2

K∑
l=1

K∑
k=1

〈
∇h(xl),∇h(xl)− vl −∇h(xk) + vk

〉
=

α

2K2

K∑
k=1

K∑
l=1

〈
∇h(xk)−∇h(xl),∇h(xk)− vk −∇h(xl) + vl

〉
=

α

K2

K∑
k=1

k−1∑
l=1

〈
∇h(xk)−∇h(xl),∇h(xk)− vk −∇h(xl) + vl

〉
.

Combining with (4.25) gives

(If + Ig + Ih − Sh − S1)− LHS

=
α

2K2

K∑
k=1

k−1∑
l=1

(∥∥∥vk − vl
∥∥∥2 + 2

〈
∇h(xk)−∇h(xl),∇h(xk)− vk −∇h(xl) + vl

〉)

=
α

2K2

K∑
k=1

k−1∑
l=1

(∥∥∥vk −∇h(xk)− (vl −∇h(xl))
∥∥∥2 + ∥∥∥∇h(xk)−∇h(xl)

∥∥∥2) = S2,

which is the desired result.

Theorem 4.5 (Convergence of (DYS-fg)). Suppose f , g, and h are CCP functions and h is L-
smooth (with L > 0). Suppose {(xk, uk)}k∈N is generated by (DYS-fg) with stepsize α = 1

L and
initial points (x0, u0). Then, for all K ∈ N+, the ergodic iterates (xK , uK) defined in (3.5) satisfy

L(xK , u)− L(x, uK) ≤ D0(x, u)

K + 1
(4.26)

for all x ∈ dom f and all u ∈ dom g∗, where D0(x, u) is defined in (2.15).

Proof. It follows from the convexity of f and g that If and Ig are nonpositive and from the convexity
and the L-smoothness of h that Ih is nonpositive. Moreover, Sh, S1 and S2 are nonnegative since
they are sum of squares. Therefore, we conclude (4.26) from Proposition 4.4.

Recall that (DYS-fg) reduces to (DRS-fg) when h = 0. So, (DYS-fg) cannot exhibit a faster
worst-case rate than (DRS-fg). However, Theorem 4.5 presents the same upper bound for (DYS-fg)
as for (DRS-fg). Combined with the tightness of our (DRS-fg) rate, we readily conclude that the
D/(K + 1) ergodic rate in Theorem 4.5 must be tight for (DYS-fg). This argument is not evident
prior to obtaining Theorem 4.5. So we present the tightness of (4.26) as a corollary.

Corollary 4.6 (Worst-case example for (DYS-fg)). Under the same setting as in Theorem 4.5, for
any K ∈ N+ and any α > 0, there exist CCP functions f and g, 1

α -smooth convex function h, and
points x0, u0, x̃, ũ ∈ Rn such that αD0(x̃, ũ) = 1 where D0(x̃, ũ) is defined in (2.15) and

L(xK , ũ)− L(x̃, uK) =
D0(x̃, ũ)

K + 1
.

Proof. Note that Proposition 4.4 reduces to Proposition 3.5 when h = 0. Thus, following the same
argument as in the proof of Theorem 3.4, we can show that the worst-case example for (DRS-fg)
in Theorem 3.4, together with h = 0, also serves as a worst-case example for (DYS-fg).

28



4.4 Discussion: comparison between the two variants

For (DYS-fg), a worst-case example exists with h = 0, and in fact, the same example serves both
(DYS-fg) and its special case (DRS-fg). This naturally arises the question of whether (DYS-gf)
and (DRS-gf) can also share the same worst-case example, or whether a worst-case instance for
(DYS-gf) can be constructed with h = 0. The following proposition provides a negative answer:
(DYS-gf) restores the D/(K + 1) rate as long as either g = 0 or h = 0.

Proposition 4.7. Suppose {(xk, uk)}k∈N is generated by (DYS-gf) with stepsize α > 0 and initial
points (x0, u0). Denote xK , uK as in (3.5). For any K ∈ N+, there do not exist CCP functions f
and g, 1

α -smooth convex function h, and points x0, u0, x̃, ũ ∈ Rn such that at least one of g or h
vanishes, αD0(x̃, ũ) = 1 where D0(x̃, ũ) is defined in (2.15), and

L(xK , ũ)− L(x̃, uK) >
D0(x̃, ũ)

K + 1
.

Proof. When g = 0, we have g∗ = δ{0} and thus proxα−1g∗(y) = 0 for all y ∈ Rn. Then, the
sequence {xk}k∈N generated by (DYS-gf) reduces to a special case of (DYS-fg) with g = 0. So,
the desired conclusion follows from Theorem 4.5.

When h = 0, the sequence {(xk, uk)}k∈N generated by (DYS-gf) reduces to (DRS-gf). Therefore
we obtain the desired conclusion from Theorem 3.2.

Proposition 4.7 reveals that, in the worst case, the presence of the smooth term h slows down
the convergence of (DYS-gf). In contrast, this phenomenon does not occur in (DYS-fg). This
asymmetry highlights a key distinction between the two variants of DYS: while (DYS-fg) remains
robust to the inclusion of h, the performance of (DYS-gf) is more sensitive to the smooth term.
Consequently, care must be taken in selecting which formulation to use, especially when the smooth
term h plays a significant role in the objective.

5 Conclusion

This paper presents novel convergence analyses of the Davis–Yin splitting (DYS) algorithm and its
variant obtained by swapping the roles of the two nonsmooth objective functions. While the two
functions appear symmetrically in the problem formulation, this symmetry breaks at the algorithmic
level. Surprisingly, we show that the swapped DYS algorithm (which we call DYS-fg) achieves a
faster D/(K+1) ergodic rate, compared to the standard D/K rate of the original DYS. These results
are established under a unified primal–dual gap metric and illustrated via concrete examples.

In contrast, for Douglas–Rachford splitting (DRS), which arises as a special case of DYS when
the smooth term vanishes, both the original and swapped versions exhibit the same convergence
rates and nearly identical worst-case instances. This contrast highlights how the presence of a
smooth term alters the algorithmic behavior under different update orders.

Our findings suggest that the update order is not merely a structural nuance, but one that may
affect algorithmic performance. Future work may extend our analysis to broader settings, including
a composite extension of (1.1) in which g is replaced by g ◦A for a linear operator A, as well as to
DYS and DRS for monotone inclusion problems.

29



Acknowledgments

The work of S. Ma was supported in part by the National Science Foundation under Grants CCF-
2311275 and ECCS-2326591, and in part by the Office of Naval Research under Grant N00014-24-
1-2705. The work of J.J. Suh was supported by the Basic Science Research Program through the
National Research Foundation of Korea (NRF), funded by the Ministry of Education, under Grant
RS-2024-00410486.

References

[1] F. J. Aragón-Artacho and D. Torregrosa-Belén. A direct proof of convergence of Davis–Yin
splitting algorithm allowing larger stepsizes. Set-Valued and Variational Analysis, 30(3):1011–
1029, 2022.

[2] H. H. Bauschke and P. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. Springer Publishing Company, Incorporated, 2nd edition, 2017.

[3] D. P. Bertsekas. Incremental gradient, subgradient, and proximal methods for convex opti-
mization: A survey. Optimization for Machine Learning, 2010(1-38):3, 2011.

[4] N. Bousselmi, J. M. Hendrickx, and F. Glineur. Interpolation conditions for linear operators and
applications to performance estimation problems. SIAM Journal on Optimization, 34(3):3033–
3063, 2024.

[5] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[6] A. Chambolle and T. Pock. A first-order primal–dual algorithm for convex problems with
applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, 2011.

[7] A. Chambolle and T. Pock. An introduction to continuous optimization for imaging. Acta
Numerica, 25:161–319, 2016.

[8] A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal–dual
algorithm. Mathematical Programming, 159(1):253–287, 2016.

[9] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In Fixed-
Point Algorithms for Inverse Problems in Science and Engineering, Springer Optimization and
Its Applications, pages 185–212. Springer New York, 2011.

[10] L. Condat. A primal–dual splitting method for convex optimization involving Lipschitzian,
proximable and linear composite terms. Journal of Optimization Theory and Applications,
158(2):460–479, 2013.

[11] L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi. Proximal splitting algorithms for
convex optimization: A tour of recent advances, with new twists. SIAM Review, 65(2):375–435,
2023.

[12] F. Cui, Y. Tang, and Y. Yang. An inertial three-operator splitting algorithm with applications
to image inpainting. Applied Set-Valued Analysis and Optimization, 1:113–134, 2019.

30



[13] D. Davis and W. Yin. Convergence rate analysis of several splitting schemes. In R. Glowinski,
S. J. Osher, and W. Yin, editors, Splitting Methods in Communication, Imaging, Science, and
Engineering, pages 115–163. Springer, 2017.

[14] D. Davis and W. Yin. A three-operator splitting scheme and its optimization applications.
Set-Valued and Variational Analysis, 25:829–858, 2017.

[15] J. Douglas and H. H. Rachford. On the numerical solution of heat conduction problems in two
and three space variables. Transactions of the American Mathematical Society, 82(2):421–439,
1956.

[16] Y. Drori and M. Teboulle. Performance of first-order methods for smooth convex minimization:
a novel approach. Mathematical Programming, 145(1-2):451–482, 2014.

[17] J. Eckstein. Splitting methods for monotone operators with applications to parallel optimization.
PhD thesis, Massachusetts Institute of Technology, 1989.

[18] J. Eckstein and D. Bertsekas. On the Douglas–Rachford splitting method and the proximal
point algorithm for maximal monotone operators. Mathematical Programming, 55(1):293–318,
1992.

[19] B. He and X. Yuan. On the convergence rate of Douglas–Rachford operator splitting method.
Mathematical Programming, 153(2):715–722, 2015.

[20] X. Jiang and L. Vandenberghe. Bregman three-operator splitting methods. Journal of Opti-
mization Theory and Applications, 196(3):936–972, 2023.

[21] P. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM
Journal on Numerical Analysis, 16(6):964–979, 1979.

[22] Y. Nesterov. Lectures on Convex Optimization. Springer, 2018.

[23] N. Parikh and S. P. Boyd. Proximal algorithms. Foundations and Trends in Optimization,
1(3):127–239, 2014.

[24] G. B. Passty. Ergodic convergence to a zero of the sum of monotone operators in Hilbert space.
Journal of Mathematical Analysis and Applications, 72(2):383–390, 1979.

[25] D. W. Peaceman and H. H. Rachford. The numerical solution of parabolic and elliptic differ-
ential equations. Journal of the Society for Industrial and Applied Mathematics, 3(1):28–41,
1955.

[26] F. Pedregosa and G. Gidel. Adaptive three operator splitting. In Proceedings of the 35th
International Conference on Machine Learning, volume 80, pages 4085–4094, 2018.

[27] R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics and Physics. Prince-
ton University Press, 1970.

[28] E. K. Ryu and W. Yin. Large-Scale Convex Optimization: Algorithms and Analyses via Mono-
tone Operators. Cambridge University Press, 2022.

31



[29] A. Salim, L. Condat, K. Mishchenko, and P. Richtárik. Dualize, split, randomize: Toward fast
nonsmooth optimization algorithms. Journal of Optimization Theory and Applications, pages
1–29, 2022.

[30] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Exact worst-case performance of first-order
methods for composite convex optimization. SIAM Journal on Optimization, 27(3):1283–1313,
2017.

[31] M. Yan. A new primal–dual algorithm for minimizing the sum of three functions with a linear
operator. Journal of Scientific Computing, 76(3):1698–1717, 2018.

[32] M. Yan and Y. Li. On the improved conditions for some primal–dual algorithms. Journal of
Scientific Computing, 99(3):74, 2024.

[33] M. Yan and W. Yin. Self equivalence of the alternating direction method of multipliers. In
R. Glowinski, S. J. Osher, and W. Yin, editors, Splitting Methods in Communication, Imaging,
Science, and Engineering, pages 165–194. Springer, 2017.

[34] A. Yurtsever, A. Gu, and S. Sra. Three operator splitting with subgradients, stochastic gradi-
ents, and adaptive learning rates. In Neural Information Processing Systems, 2021.

[35] A. Yurtsever, B. C. Vu, and V. Cevher. Stochastic three-composite convex minimization. In
Neural Information Processing Systems, 2016.

[36] R. Zhao and V. Cevher. Stochastic three-composite convex minimization with a linear operator.
In International Conference on Artificial Intelligence and Statistics, 2018.

[37] R. Zhao, W. B. Haskell, and V. Y. F. Tan. An optimal algorithm for stochastic three-composite
optimization. In International Conference on Artificial Intelligence and Statistics, 2019.

[38] C. Zong, Y. Tang, and Y. J. Cho. Convergence analysis of an inexact three-operator splitting
algorithm. Symmetry, 10(11):563, 2018.

32


	Introduction
	Background material and prior work
	Basic concepts and notation in convex optimization
	Douglas–Rachford splitting algorithms
	Davis–Yin splitting algorithms
	Preview of the established convergence rates

	Convergence analysis of two variants of DRS
	DRS-gf: worst-case rate and its tightness
	DRS-fg: worst-case rate and its tightness

	Convergence analysis of two variants of DYS
	Analysis of DYS-gf
	DYS-gf fails to achieve a D/(K+1) rate
	DYS-fg: restoring the D/(K+1) rate by swapping f and g
	Discussion: comparison between the two variants

	Conclusion

