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Decentralized average consensus

Classic problem setup
• a connected graph/network G = (V, E) with n agents
• each agent initially holds a vector xi ∈ Rd

• each agent only communicates with its neighbors (message passing)
• a round of communication is represented as matrix–vector product

X(k+1) = WX(k), where X(0) =
[
x1 x2 · · · xn

]T ∈ Rn×d

where W ∈ Sn is the mixing matrix: Wij = 0 if {i, j} /∈ E

Goal: via rounds of communication, without a central agent, all agents obtain

x = 1
n

n∑
i=1

xi

Classic result: asymptotic convergence for any {xi} if and only if
W1 = 1, W T1 = 1, 1 = |λ1| > |λ2| ≥ · · · ≥ |λn|
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Modern applications in distributed optimization

in traditional applications and federated learning

• agents are connected with low-bandwidth channels

• communication is highly fragile; occasional link failures

• network topology is fixed or cannot be controlled

we consider modern scenarios with high-performance data-center clusters

• all GPUs are connected with high-bandwidth channels

• communication is highly reliable; no occasional link failure

• network topology can be fully controlled
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Graph sequence with finite-time consensus property

the finite-time consensus property is defined for a given sequence of graphs

{G(l) ≡ (V, W (l), E(l))}τ−1
l=0

sparsity is desirable: each graph G(l) might not be connected

Consensus perspective: decentralized averaging converges in τ iterations

X(τ) = W (τ−1)W (τ−2) · · · W (1)W (0)X(0) = 1xT

Matrix perspective:

W (τ−1)W (τ−2) · · · W (1)W (0) = 1
n
11T =: J
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Preview

we study three classes of graph sequences with finite-time consensus

graph sequence size n τ

p-peer hyper-cuboids [NJYU’23] any n ∈ N≥2 # prime factors
SDS factor graphs [JNUY’24] any n ∈ N≥2 flexible∗

DSHB factor graphs [JNUY’24] any n ∈ N≥2 flexible∗

and their applications in distributed optimization algorithms

SDS: sequential doubly stochastic; DSHB: doubly stochastic hierarchically banded
∗: τ is related to a partition n =

∑τ

k=1 nk

References
◦ [NJYU’23] On graphs with finite-time consensus and their use in gradient

tracking, arXiv:2311.01317 ; under 2nd round review in SIOPT
◦ [JNUY’24] Sparse factorization of the square all-ones matrix of arbitrary order,

arXiv:2401.14596 ; under 2nd round review in SIMAX
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One-peer hyper-cube (for n = 2τ )

binary representation of integers: n = 8 = 2 × 2 × 2
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p-Peer hyper-cuboid: An example n = 12

multi-base representation of integers: n = 12 = 3 × 2 × 2
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p-Peer hyper-cuboid: Limitations

• p-peer hyper-cuboids revert to fully-connected graphs when n is prime
• data centers are not equidistant but formed in clusters

◦ intra-cluster communication is cheap, flexible and can be varied
◦ inter-cluster communication is expensive and should be minimized
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Three-phase communication protocol

• phase 1: intra-cluster communication achieving finite-time consensus
• phase 2: limited inter-cluster communication
• phase 3: intra-cluster communication achieving finite-time consensus

we now focus on reducing the communication cost in phase 2

A two-block example

J =
[
J1

J2

] [
A11 A12
AT

12 A22

] [
J1

J2

]
=

[
J1A11J1 J1A12J2

(J1A12J2)T J2A22J2

]
,

where n = n1 + n2 with n1 ≥ n2, J1 = 1
n1
1n11

T
n1

, and J2 = 1
n2
1n21

T
n2

J1

J2

A11

A22

A12

AT
12

J1

J2
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A two-block example

J =
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=
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The general case

J = J0AJ0

• J0 := J1 ⊕ · · · ⊕ Jτ is block diagonal with Jk := 1
nk
11T ∈ Rnk×nk

• ⊕ the direct sum of two matrices: X ⊕ Y = blkdiag(X, Y )

• each Jk can be further decomposed into, e.g., p-peer hyper-cuboids

• key trade-off:

# communication per round (sparsity) v.s. # communication rounds

• we provide two options for the A-factor

◦ A can be decomposed as product of several banded matrices

◦ A can be hierarchically partitioned as banded matrices
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Sequential doubly stochastic (SDS) factorization

J = J0ALJ0 with AL = S(1)S(2) · · · S(τ−1)

J = J0ARJ0 with AR = S(τ−1)S(τ−2) · · · S(1)

where {S(k)} ⊂ Sn are symmetric and doubly stochastic with banded pattern

S(1)

· · ·

S(τ−2) S(τ−1)
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Doubly stochastic hierarchically banded (DSHB) factor

J = J0ADSHBJ0,

where ADSHB is symmetric, doubly stochastic, and hierarchically banded

n1

τ∑
j=2

nj = m1

n2

m2
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Numerical demonstration: decentralized average consensus

• decentralized average consensus iterations

x
(k+1)
i = W (k)x

(k)
i , for i = 1, . . . , n in parallel

• we plot the consensus error

Ξ(k) = 1
n

n∑
i=1

∥x
(k)
i − x∥2
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Numerical demonstration: decentralized optimization

consider the nonconvex optimization problem

minimize 1
n

n∑
i=1

∥Aix − b∥2 + µ
d∑

j=1

x[j]2

1+x[j]2

• apply decentralized gradient descent (DGD) and gradient tracking (GT)
• static counterpart is built as the union of the graph sequence

E(static) = E(0) ∪ · · · ∪ E(τ−1)
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Summary

we study three classes of graph sequences with finite-time consensus

graph sequence size n # iterations
p-peer hyper-cuboids [NJYU’23] any n ∈ N≥2 n =

∏τ
k=1 nk

SDS factor graphs [JNUY’24] any n ∈ N≥2 n =
∑τ

k=1 nk

DSHB factor graphs [JNUY’24] any n ∈ N≥2 n =
∑τ

k=1 nk

• finite-time consensus is achieved for any n ∈ N≥2

• takes into account intra-cluster and inter-cluster communications

Application to decentralized optimization
• reduced communication cost when used in existing decentralized methods
• algorithm development: more to expect . . .
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