Graph sequences with finite-time convergence for decentralized average consensus

and applications in distributed optimization

Xin Jiang

School of Operations Research and Information Engineering Cornell University

> Cornell Young Researchers Workshop October 10, 2024

Classic problem setup

- a connected graph/network $G = (V, E)$ with *n* agents
- \bullet each agent initially holds a vector $x_i \in \mathbb{R}^d$
- each agent only communicates with its neighbors (message passing)
- a round of communication is represented as matrix–vector product

$$
X^{(k+1)} = W X^{(k)}, \quad \text{where } X^{(0)} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T \in \mathbb{R}^{n \times d}
$$

where $W \in \mathbb{S}^n$ is the mixing matrix: $W_{ij} = 0$ if $\{i, j\} \notin E$

Goal: via rounds of communication, without a central agent, all agents obtain

$$
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
$$

Classic result: asymptotic convergence for any $\{x_i\}$ if and only if $W1 = 1$, $W^T1 = 1$, $1 = |\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$

Modern applications in distributed optimization

in traditional applications and federated learning

- agents are connected with low-bandwidth channels
- communication is highly fragile; occasional link failures
- network topology is fixed or cannot be controlled

we consider modern scenarios with high-performance data-center clusters

- all GPUs are connected with high-bandwidth channels
- communication is highly reliable; no occasional link failure
- network topology can be fully controlled

Graph sequence with finite-time consensus property

the **finite-time consensus** property is defined for a given sequence of graphs

$$
\{G^{(l)} \equiv (V, W^{(l)}, E^{(l)})\}_{l=0}^{\tau-1}
$$

sparsity is desirable: each graph $G^{(l)}$ might not be connected

Consensus perspective: decentralized averaging converges in *τ* iterations

$$
X^{(\tau)} = W^{(\tau-1)}W^{(\tau-2)} \cdots W^{(1)}W^{(0)}X^{(0)} = \mathbb{1}\bar{x}^T
$$

Matrix perspective:

$$
W^{(\tau-1)}W^{(\tau-2)}\cdots W^{(1)}W^{(0)} = \frac{1}{n}11^{T} =: J
$$

Preview

we study three classes of graph sequences with finite-time consensus

and their applications in distributed optimization algorithms

SDS: sequential doubly stochastic; DSHB: doubly stochastic hierarchically banded * : τ is related to a partition $n = \sum_{k=1}^{\tau} n_k$

References

- [N**J**YU'23] On graphs with finite-time consensus and their use in gradient tracking, arXiv:2311.01317; under 2nd round review in SIOPT
- [**J**NUY'24] Sparse factorization of the square all-ones matrix of arbitrary order, arXiv:2401.14596; under 2nd round review in SIMAX

One-peer hyper-cube (for $n = 2^{\tau}$)

 $[SLJJ'16]$ 6

 p **-Peer hyper-cuboid: An example** $n = 12$

multi-base representation of integers: $n = 12 = 3 \times 2 \times 2$

G(1)

G(2)

*p***-Peer hyper-cuboid: Limitations**

- *p*-peer hyper-cuboids revert to fully-connected graphs when *n* is prime
- data centers are not equidistant but formed in clusters
	- intra-cluster communication is cheap, flexible and can be varied
	- inter-cluster communication is expensive and should be minimized

8

Three-phase communication protocol

- phase 1: intra-cluster communication achieving finite-time consensus
- phase 2: limited inter-cluster communication
- phase 3: intra-cluster communication achieving finite-time consensus we now focus on reducing the communication cost in phase 2

A two-block example

$$
J = \begin{bmatrix} J_1 & 0 & 0 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix} \begin{bmatrix} J_1 & 0 \\ 0 & J_2 \end{bmatrix} = \begin{bmatrix} J_1 A_{11} J_1 & J_1 A_{12} J_2 \\ (J_1 A_{12} J_2)^T & J_2 A_{22} J_2 \end{bmatrix},
$$

where $n = n_1 + n_2$ with $n_1 \ge n_2$, $J_1 = \frac{1}{n_1} 1\!\!1_{n_1} 1\!\!1_{n_1}^T$, and $J_2 = \frac{1}{n_2} 1\!\!1_{n_2} 1\!\!1_{n_2}^T$

$$
J = \begin{bmatrix} J_1 & & \\ & J_2 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix} \begin{bmatrix} J_1 & & \\ & J_2 \end{bmatrix} = \begin{bmatrix} J_1 A_{11} J_1 & J_1 A_{12} J_2 \\ (J_1 A_{12} J_2)^T & J_2 A_{22} J_2 \end{bmatrix}
$$

$$
J_1
$$

$$
J_2
$$

$$
J_3
$$

$$
A = \begin{bmatrix} \frac{n_2}{n} I_{n_2} & 0 & \frac{n_1}{n} I_{n_2} \\ 0 & I_{n_1 - n_2} & 0 \\ \frac{n_1}{n} I_{n_2} & 0 & \frac{n_2}{n} I_{n_1} \end{bmatrix}
$$

 $J = J_0 A J_0$

- \bullet $J_0 := J_1 \oplus \cdots \oplus J_{\tau}$ is block diagonal with $J_k := \frac{1}{n_k} \mathbb{1} \mathbb{1}^T \in \mathbb{R}^{n_k \times n_k}$
- \oplus the direct sum of two matrices: $X \oplus Y = \text{blkdiag}(X, Y)$
- each *J^k* can be further decomposed into, e.g., *p*-peer hyper-cuboids
- key **trade-off**:

communication per round (sparsity) v.s. $\#$ communication rounds

- we provide two options for the *A*-factor
	- *A* can be decomposed as product of several banded matrices
	- *A* can be hierarchically partitioned as banded matrices

Sequential doubly stochastic (SDS) factorization

$$
J = J_0 A_{\text{L}} J_0 \quad \text{with } A_{\text{L}} = S^{(1)} S^{(2)} \cdots S^{(\tau - 1)}
$$

$$
J = J_0 A_{\text{R}} J_0 \quad \text{with } A_{\text{R}} = S^{(\tau - 1)} S^{(\tau - 2)} \cdots S^{(1)}
$$

where $\{S^{(k)}\}\subset\mathbb{S}^n$ are symmetric and doubly stochastic with banded pattern

Doubly stochastic hierarchically banded (DSHB) factor

 $J = J_0 A_{DSHR} J_0$

where A_{DSHR} is symmetric, doubly stochastic, and hierarchically banded

Numerical demonstration: decentralized average consensus

• decentralized average consensus iterations

$$
x_i^{(k+1)} = W^{(k)} x_i^{(k)}, \quad \text{for } i = 1, \dots, n \text{ in parallel}
$$

• we plot the consensus error

$$
\Xi^{(k)} = \frac{1}{n} \sum_{i=1}^{n} ||x_i^{(k)} - \overline{x}||_2^2
$$

Numerical demonstration: decentralized optimization

consider the nonconvex optimization problem

minimize
$$
\frac{1}{n} \sum_{i=1}^{n} ||A_i x - b||^2 + \mu \sum_{j=1}^{d} \frac{x[j]^2}{1 + x[j]^2}
$$

- apply decentralized gradient descent (DGD) and gradient tracking (GT)
- static counterpart is built as the union of the graph sequence

$$
E^{(\text{static})} = E^{(0)} \cup \dots \cup E^{(\tau-1)}
$$

Summary

we study three classes of graph sequences with finite-time consensus

- finite-time consensus is achieved for any $n \in \mathbb{N}_{\geq 2}$
- takes into account intra-cluster and inter-cluster communications

Application to decentralized optimization

- reduced communication cost when used in existing decentralized methods
- **algorithm development:** more to expect . . .