First-order methods for semidefinite programming

Rank identification and local linear convergence

Xin JiangCornell ORIE $\Rightarrow U$. of Houston ISE

joint work with Shucheng Kang (Harvard) and Heng Yang (Harvard)

International Conference on Continuous Optimization (ICCOPT)
July 22, 2025

Semidefinite programs (SDP)

 $\mathcal{A}\colon\mathbb{S}^n o\mathbb{R}^m$ is a linear mapping, and \mathcal{A}^* is its adjoint

$$\mathcal{A}(X) = (\langle A_1, X \rangle, \langle A_2, X \rangle, \dots, \langle A_m, X \rangle)$$

Interior-point methods

- general-purpose implementations for dense problems do not scale well
- ullet each iteration involves computations with complexity m^3 , m^2n^2 , mn^3
- customization to exploit problem structure is difficult

First-order proximal splitting methods

- for example, ADMM, Douglas–Rachford splitting (DRS), primal–dual hybrid gradient (PDHG)
- exploit structure in linear constraints is straightforward
- require eigenvalue decompositions for projections on positive semidefinite (PDS) cones

ADMM for (dual) SDP

$$y_{k+1} = (\mathcal{A}\mathcal{A}^*)^{-1} \left(\sigma^{-1}b - \mathcal{A}(\sigma^{-1}X_k + S_k - C) \right)$$

$$S_{k+1} = \prod_{\mathbf{S}^n_+} \left(C - \mathcal{A}^* y_{k+1} - \sigma^{-1} X_k \right)$$

$$X_{k+1} = X_k + \sigma \left(S_{k+1} + \mathcal{A}^* y_{k+1} - C \right)$$

- $(\mathcal{A}\mathcal{A}^*)^{-1}$ involves one factorization or solving a linear system per iteration
- $\Pi_{\mathbb{S}^n_+}$ requires an eigenvalue decomposition

- solves SDPs to moderate accuracy
- suffers from slow sublinear worst-case rate

Wen, Goldfarb & Yin (2010)

PDHG for SDP

$$X_{k+1} = \prod_{\substack{\mathbb{S}_+^n \\ Y_{k+1}}} \left(X_k - \tau (C - \mathcal{A}^* y_k) \right)$$
$$y_{k+1} = y_k - \sigma \left(\mathcal{A}(2X_{k+1} - X_k) - b \right)$$

- $\Pi_{\mathbb{S}^n_+}$ requires an eigenvalue decomposition
- ullet only requires linear mappings ${\cal A}$ and ${\cal A}^*$

First-order methods for SDP

- Local (R-)linear convergence
- ullet Rank identification: after finitely many iterations, X_k finds and maintains the solution rank

$$\operatorname{rank}(X_k) = \operatorname{rank}(X_\star) \quad \text{for } k \ge \overline{k}_{\mathsf{ID}}$$

Outline

Rank identification

Linear convergence

Open questions and future directions

One-step ADMM (for SDP)

primal-dual solutions are simultaneously diagonalizable and assume strict complementarity

$$X_{\star} = Q_{\star} \begin{bmatrix} \Lambda_{X} & 0 \\ 0 & 0 \end{bmatrix} Q_{\star}^{\mathsf{T}} \in \mathbb{S}_{+}^{n}, \quad S_{\star} = Q_{\star} \begin{bmatrix} 0 & 0 \\ 0 & \Lambda_{S} \end{bmatrix} Q_{\star}^{\mathsf{T}} \in \mathbb{S}_{+}^{n}, \quad Z_{\star} = X_{\star} - S_{\star} = Q_{\star} \begin{bmatrix} \Lambda_{X} & 0 \\ 0 & -\Lambda_{S} \end{bmatrix} Q_{\star}^{\mathsf{T}},$$

where Q_{\star} is orthogonal, $\lambda_1 \geq \cdots \geq \lambda_r > 0 > \lambda_{r+1} \geq \cdots \geq \lambda_n$, and

$$\Lambda_X := \operatorname{diag}(\lambda_1, \dots, \lambda_r), \qquad \Lambda_S := -\operatorname{diag}(\lambda_{r+1}, \dots, \lambda_n),$$

One-step ADMM (take $\sigma = 1$ for simplicity)

$$Z_{k+1} = \mathcal{A}^* (\mathcal{A} \mathcal{A}^*)^{-1} \mathcal{A} (-2\Pi_{\mathbb{S}^n_+}(Z_k) + Z_k) + \Pi_{\mathbb{S}^n_+}(Z_k) + \mathcal{A}^* (\mathcal{A} \mathcal{A}^*)^{-1} (\mathcal{A} C + b) - C,$$

- ullet key observation: X_k and S_k share the same eigenspace; so $Z_k = X_k S_k$
- from Z_k , we can extract X_k and S_k : $X_k = \prod_{\mathbb{S}^n_+} (Z_k)$ and $S_k = \prod_{\mathbb{S}^n_+} (-Z_k)$

A direct proof of rank identification

Two equivalent statements assume ADMM converges to a strictly complementary solution:

$$\operatorname{rank} X_{\star} + \operatorname{rank} S_{\star} = n$$

ullet there exists $ar{k}_{\mathrm{ID}} \in \mathbb{N}$ such that for any integer $k \geq ar{k}_{\mathrm{ID}}$, it holds that

$$\operatorname{rank} X_k = \operatorname{rank} X_\star =: r,$$
 $\operatorname{rank} S_k = \operatorname{rank} S_\star = n - r$

• if $\|Z_k - Z_\star\|_2 \le \min\{\lambda_r, -\lambda_{r+1}\}$ (recall $\{\lambda_i\}$ are the eigenvalues of Z_\star), then

$$\gamma_r := \operatorname{eig}_r(Z_k) > 0, \qquad \gamma_{r+1} := \operatorname{eig}_{r+1}(Z_k) < 0,$$

where γ_r and γ_{r+1} the rth and (r+1)st largest eigenvalue of Z_k , respectively

Proof: from Weyl's inequality, we see

$$\gamma_r \ge \lambda_r - \|Z_k - Z_\star\|_2 > \lambda_r - \min\{\lambda_r, -\lambda_{r+1}\} \ge 0$$
$$\gamma_{r+1} \le \lambda_{r+1} + \|Z_k - Z_\star\|_2 < \lambda_{r+1} + \min\{\lambda_r, -\lambda_{r+1}\} \le 0$$

so $\operatorname{rank} X_k = \operatorname{rank} \left(\Pi_{\mathbb{S}^n_+}(Z_k) \right) = r = \operatorname{rank} \left(\Pi_{\mathbb{S}^n_+}(Z_\star) \right) = \operatorname{rank} X_\star$

Zoom out: partial smoothness and activity identification

such identification is not unique in ADMM and/or SDP

Partly smooth function: $f\colon \mathbb{E} \to \overline{\mathbb{R}}$ is partly smooth at x relative to a manifold $\mathcal M$ if

- ullet restricted smoothness: the restriction $f|_{\mathcal{M}}$ is smooth around x
- normal sharpness: f'(x; -v) + f'(x; v) > 0 for all nonzero directions v in $\mathcal{N}_{\mathcal{M}}(x)$

together with mild conditions on its subdifferential ∂f

Activity identification

- suppose f is partly smooth at $x_{\star} \in \operatorname{argmin} f$ w.r.t. \mathcal{M} and $s_{\star} \in \operatorname{relint} \partial f(x_{\star})$
- suppose the sequence (x_k, s_k) satisfies $s_k \in \partial f(x_k)$ and converges to (x_\star, s_\star)
- ullet for sufficiently large k, it holds that $x_k \in \mathcal{M}$

Examples and counter-examples

• Piecewise linear function: $f(x) = \max_{i \in \mathcal{I}} \{ \langle a_i, x \rangle + b_i \}$; the identifiable set at \overline{x} is

$$\mathcal{M}_{\overline{x}} = \{x \mid \mathcal{I}(x) = \mathcal{I}(\overline{x})\}, \quad \text{where } \mathcal{I}(x) = \{i \in \mathcal{I} \mid \langle a_i, x \rangle + b_i = f(x)\}$$

• Indicator of PSD cone: consider $\overline{X} \in \mathbb{S}^n_+$ and there exists $\overline{S} \in \operatorname{relint} \mathcal{N}_{\mathbb{S}^n_+}(\overline{X})$

$$\mathcal{M}_{\overline{X}} = \{ X \in \mathbb{S}^n_+ \mid \operatorname{rank} X = \operatorname{rank} \overline{X} \}$$

- \circ the regularity condition $\overline{S} \in \operatorname{relint} \mathcal{N}_{\mathbb{S}^n_+}(\overline{X})$ amounts to strict complementarity in SDP
- o without strict complementarity, PSD cone may not admit an identifiable set

• Counter-example: $f(x,y) = \sqrt{x^4 + y^2}$ is not partly smooth and does not admit a manifold

Proximal (splitting) methods for SDP

• proximal splitting methods: ADMM for dual SDP is DRS applied to primal SDP

$$\text{minimize} \quad \delta_{\mathbb{S}^n_+}(X) + \left(\langle C, X \rangle + \delta_{\{X|\mathcal{A}(X) = b\}}(X)\right)$$

- \circ $\delta_{\mathbb{S}^n_+}$ is partly smooth at X_\star with respect to the fixed-rank manifold (under SC)
- $\circ \ (X_k, S_k)$ satisfies $S_k \in \mathcal{N}_{\mathbb{S}^n_{\perp}}(X_k)$ and converges to (X_{\star}, S_{\star})
- \circ so the X_k iterates identify the solution rank for sufficiently large k
- ullet augmented Lagrangian method: PPM applied to the dual $h(y) = \langle b,y \rangle + \delta_{\mathbb{S}^n_+}(C \mathcal{A}^*(y))$

$$X_{k+1} = \operatorname{argmin} \{ \langle C, X \rangle + \frac{\rho}{2} || \mathcal{A}X - b + \frac{1}{\rho} y_k ||_2^2 \mid X \succeq 0 \}$$

$$y_{k+1} = y_k + \rho (\mathcal{A}X_{k+1} - b)$$

- o h may not be partly smooth at y_{\star}
- o additional condition is needed, e.g., primal solution is unique [DLY25]

Numerical evidence

apply ADMM and augmented Lagrangian method (ALM) to the SDP reformulation of

$$\text{minimize} \quad f(x,y) := \sqrt{x^4 + y^2}$$

- in the reformulated SDP, $\operatorname{rank}(X_{\star})=1$ and $\lambda_1(X_{\star})=1$
- \bullet f is not partly smooth at 0, so ALM does not have rank identification, whereas ADMM does

Outline

Rank identification

Linear convergence

Open questions and future directions

A refined error bound for PSD cone projection

for a nonsingular $Z \in \mathbb{S}^n$, denote its eigenvalue decomposition by

$$Z = Q \operatorname{diag}(\lambda_1, \dots, \lambda_r, \lambda_{r+1}, \dots, \lambda_n) Q^{\mathsf{T}} = \begin{bmatrix} Q_X & Q_S \end{bmatrix} \begin{bmatrix} \Lambda_X & 0 \\ 0 & \Lambda_S \end{bmatrix} \begin{bmatrix} Q_X^{\mathsf{T}} \\ Q_S^{\mathsf{T}} \end{bmatrix}$$

where $\lambda_1 \geq \cdots \geq \lambda_r > 0 > \lambda_{r+1} \geq \cdots \geq \lambda_n$

- $\bullet \ \ \text{previous result } [\text{SSO2}]: \ \left\|\Pi_{\mathbb{S}^n_+}(Z+\Delta) \Pi_{\mathbb{S}^n_+}(Z) \left(\Pi_{\mathbb{S}^n_+}(Z)\right)'(\Delta)\right\|_2 \lesssim \|\Delta\|_2^2$
- ullet when Q=I, for all $\Delta\in\mathbb{S}^n$ with norm sufficiently small, it holds that

$$\left\|\Pi_{\mathbb{S}^n_+}(Z+\Delta) - \Pi_{\mathbb{S}^n_+}(Z) - \left(\Pi_{\mathbb{S}^n_+}(Z)\right)'(\Delta)\right\|_2 \lesssim \|\Delta_O\|_2 \|\Delta\|_2, \quad \text{where } \Delta = \begin{bmatrix} \Delta_X & \Delta_O^\mathsf{T} \\ \Delta_O & \Delta_S \end{bmatrix}$$

 $\bullet \ \ \text{in general:} \quad \left\|\Pi_{\mathbb{S}^n_+}(Z+\Delta) - \Pi_{\mathbb{S}^n_+}(Z) - \left(\Pi_{\mathbb{S}^n_+}(Z)\right)'(\Delta)\right\|_2 \lesssim \|\frac{Q_S^\mathsf{T}}{\Delta_O Q_X}\|_2 \|\Delta\|_2$

Local linear convergence with nondegeneracy

Local linearization of ADMM one-step ADMM can be further reformulated as

$$Z_{k+1} - Z_{\star} = \mathcal{F}(Z_k - Z_{\star}) + \Psi_k,$$

where $\mathcal{F} \colon \mathbb{S}^n \to \mathbb{S}^n$ is a linear, firmly nonexpansive with $\|\mathcal{F} - \Pi_{\mathrm{Fix}(\mathcal{F})}\|_{\mathrm{op}} < 1$, and

$$\|\Psi_k\|_{\mathsf{F}}\lesssim \|\Delta_{k,O}\|_{\mathsf{F}}\|\Delta_k\|_{\mathsf{F}},\quad ext{when } \Delta_k \vcentcolon= Z_k - Z_\star ext{ is sufficiently small}$$

Local linear convergence with nondegeneracy

primal nondegeneracy: $\mathcal{N}_{X_{\star}} \cap \operatorname{Range}(\mathcal{A}^*) = \{0\},$ dual nondegeneracy: $\mathcal{N}_{S_{\star}} \cap \operatorname{Null}(\mathcal{A}) = \{0\}$

- under strict complementarity (SC), nondegeneracy implies uniqueness of primal-dual solutions
- in this case, $Fix(\mathcal{F}) = \{0\}$ and

$$\|Z_{k+1} - Z_{\star}\|_{\mathsf{F}} \le \rho \|Z_k - Z_{\star}\|_{\mathsf{F}}, \quad \text{for sufficiently large } k \text{ and for any } \rho \in (\|\mathcal{F}\|_{\mathrm{op}}, 1)$$

• same proof holds in non-SC case, recovering [HSZ18] (w/o metric subregularity of KKT operator)

Local (R-)linear convergence without nondegeneracy (ND)

• without ND, $Fix(\mathcal{F}) \neq \{0\}$ and the above technique can only establish (R-)linear conv. of

$$(\operatorname{Id} - \Pi_{\operatorname{Fix}(\mathcal{F})})\Delta_k, \qquad \Pi_{\mathcal{T}_{S_{\star}}}(X_k), \qquad \Pi_{\mathcal{T}_{X_{\star}}}(S_k)$$

the last two terms are the part of X_k (or S_k) that lies outside the minimal face of X_{\star} (or S_{\star})

• consider an affine space $\mathcal{V} := \{X \mid \mathcal{A}X = b\}$

$$\begin{aligned} \operatorname{dist}(x,\mathcal{V} \cap \mathbb{R}^n_+) &\lesssim \operatorname{dist}(x,\mathcal{V}) + [-x]_+ \\ \operatorname{dist}(X,\mathcal{V} \cap \mathbb{S}^n_+) &\lesssim \left(\operatorname{dist}(X,\mathcal{V}) + [-\lambda_{\min}(X)]_+\right)^{1/2} \\ \operatorname{dist}(X,\mathcal{V} \cap \mathbb{S}^n_+ \cap \mathcal{T}^\perp_{S_\star}) &\lesssim \operatorname{dist}(X,\mathcal{V}) + [-\lambda_{\min}(X)]_+ + \|\Pi_{\mathcal{T}_{S_\star}}(X)\|_{\mathsf{F}} \end{aligned} \quad [\mathsf{Sturm00}]$$

• this gives a linear growth condition on the distance to optimality:

$$\operatorname{dist}(Z_k, \mathcal{Z}_{\star}) \lesssim \|Z_{k+1} - Z_k\|_{\mathsf{F}} + \|\Pi_{\mathcal{T}_{S_{\star}}}(X_k)\|_{\mathsf{F}} + \|\Pi_{\mathcal{T}_{X_{\star}}}(S_k)\|_{\mathsf{F}}$$

Outline

Rank identification

Linear convergence

Open questions and future directions

Rank identification and linear convergence

Open questions

- in what type of SDPs is rank identification a necessary condition for (R-)linear convergence
- under which conditions will rank identification and (R-)linear convergence occur simultaneously?

Failure cases

- ullet red curve plots KKT residual $r_{
 m max}$ and blue curve plots $\|Z_{k+1}-Z_k\|_{
 m F}$
- ullet ADMM fails to achieve $r_{
 m max} \leq 10^{-10}$ within the budget, with no evident linear convergence
- common feature: min. eigen-val of Z_{\star} (in abs. val.) is small ($10^{-4} \sim 10^{-9}$), but not exactly zero
- this observation aligns with recent findings in PDHG for LP [LY24]

Conclusion

- Algorithmic contribution on ADMM for SDP
 - o mild assumption: ADMM converges to a strictly complementary solution
 - o rank identification: ADMM identifies the solution rank in finitely many iterations
 - o local (R-)linear convergence: a refined error bound for PSD cone projection

• Empirical contribution

- o numerical results show rank identification and linear convergence across diverse SDPs
- o demonstrate failure cases linked to near-violations of strict complementarity

Shucheng Kang, Xin Jiang, and Heng Yang.
Local linear convergence of ADMM for SDP under strict complementarity.

arXiv:2503.20142

