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Semidefinite programs (SDP)

primal: minimize ⟨C, X⟩ dual: maximize ⟨b, y⟩
subject to A(X) = b subject to A∗(y) + S = C

X ∈ Sn
+ S ∈ Sn

+

A : Sn → Rm is a linear mapping, and A∗ is its adjoint
A(X) =

(
⟨A1, X⟩, ⟨A2, X⟩, . . . , ⟨Am, X⟩

)
Interior-point methods
• general-purpose implementations for dense problems do not scale well
• each iteration involves computations with complexity m3, m2n2, mn3

• customization to exploit problem structure is difficult

First-order proximal splitting methods
• for example, ADMM, Douglas–Rachford splitting (DRS), primal–dual hybrid gradient (PDHG)
• exploit structure in linear constraints is straightforward
• require eigenvalue decompositions for projections on positive semidefinite (PDS) cones
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ADMM for (dual) SDP

yk+1 = (AA∗)−1(
σ−1b − A(σ−1Xk + Sk − C)

)
Sk+1 = ΠSn

+

(
C − A∗yk+1 − σ−1Xk

)
Xk+1 = Xk + σ

(
Sk+1 + A∗yk+1 − C

)
• (AA∗)−1 involves one factorization

or solving a linear system per iteration

• ΠSn
+

requires an eigenvalue decomposition

• solves SDPs to moderate accuracy

• suffers from slow sublinear worst-case rate

Wen, Goldfarb & Yin (2010) 3



PDHG for SDP

Xk+1 = ΠSn
+

(
Xk − τ(C − A∗yk)

)
yk+1 = yk − σ

(
A(2Xk+1 − Xk) − b

)
• ΠSn

+
requires an eigenvalue decomposition

• only requires linear mappings A and A∗
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First-order methods for SDP

ADMM PDHG
• Local (R-)linear convergence
• Rank identification: after finitely many iterations, Xk finds and maintains the solution rank

rank(Xk) = rank(X⋆) for k ≥ kID
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One-step ADMM (for SDP)

primal–dual solutions are simultaneously diagonalizable and assume strict complementarity

X⋆ = Q⋆

[
ΛX 0
0 0

]
QT

⋆ ∈ Sn
+, S⋆ = Q⋆

[
0 0
0 ΛS

]
QT

⋆ ∈ Sn
+, Z⋆ = X⋆ −S⋆ = Q⋆

[
ΛX 0
0 −ΛS

]
QT

⋆ ,

where Q⋆ is orthogonal, λ1 ≥ · · · ≥ λr > 0 > λr+1 ≥ · · · ≥ λn, and

ΛX := diag(λ1, . . . , λr), ΛS := − diag(λr+1, . . . , λn),

One-step ADMM (take σ = 1 for simplicity)

Zk+1 = A∗(AA∗)−1A(−2ΠSn
+

(Zk) + Zk) + ΠSn
+

(Zk) + A∗(AA∗)−1(AC + b) − C,

• key observation: Xk and Sk share the same eigenspace; so Zk = Xk − Sk

• from Zk, we can extract Xk and Sk: Xk = ΠSn
+

(Zk) and Sk = ΠSn
+

(−Zk)
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A direct proof of rank identification

Two equivalent statements assume ADMM converges to a strictly complementary solution:

rank X⋆ + rank S⋆ = n

• there exists kID ∈ N such that for any integer k ≥ kID, it holds that

rank Xk = rank X⋆ =: r, rank Sk = rank S⋆ = n − r

• if ∥Zk − Z⋆∥2 ≤ min{λr, −λr+1} (recall {λi} are the eigenvalues of Z⋆), then

γr := eigr(Zk) > 0, γr+1 := eigr+1(Zk) < 0,

where γr and γr+1 the rth and (r + 1)st largest eigenvalue of Zk, respectively

Proof: from Weyl’s inequality, we see

γr ≥ λr − ∥Zk − Z⋆∥2 > λr − min{λr, −λr+1} ≥ 0
γr+1 ≤ λr+1 + ∥Zk − Z⋆∥2 < λr+1 + min{λr, −λr+1} ≤ 0

so rank Xk = rank
(
ΠSn

+
(Zk)

)
= r = rank

(
ΠSn

+
(Z⋆)

)
= rank X⋆
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Zoom out: partial smoothness and activity identification

such identification is not unique in ADMM and/or SDP

Partly smooth function: f : E → R is partly smooth at x relative to a manifold M if

• restricted smoothness: the restriction f |M is smooth around x

• normal sharpness: f ′(x; −v) + f ′(x; v) > 0 for all nonzero directions v in NM(x)

together with mild conditions on its subdifferential ∂f

Activity identification

• suppose f is partly smooth at x⋆ ∈ argmin f w.r.t. M and s⋆ ∈ relint ∂f(x⋆)

• suppose the sequence (xk, sk) satisfies sk ∈ ∂f(xk) and converges to (x⋆, s⋆)

• for sufficiently large k, it holds that xk ∈ M

Lewis (2002); Drusvyatskiy & Lewis (2014); Fadili, Malick & Feyré (2018) 8



Examples and counter-examples

• Piecewise linear function: f(x) = maxi∈I{⟨ai, x⟩ + bi}; the identifiable set at x is

Mx = {x | I(x) = I(x)}, where I(x) = {i ∈ I | ⟨ai, x⟩ + bi = f(x)}

• Indicator of PSD cone: consider X ∈ Sn
+ and there exists S ∈ relint NSn

+
(X)

MX = {X ∈ Sn
+ | rank X = rank X}

◦ the regularity condition S ∈ relint NSn
+

(X) amounts to strict complementarity in SDP

◦ without strict complementarity, PSD cone may not admit an identifiable set

• Counter-example: f(x, y) =
√

x4 + y2 is not partly smooth and does not admit a manifold

Lewis (2002); Drusvyatskiy & Lewis (2014); Fadili, Malick & Feyré (2018) 9



Proximal (splitting) methods for SDP

primal: minimize ⟨C, X⟩ dual: maximize ⟨b, y⟩
subject to A(X) = b subject to A∗(y) + S = C

X ∈ Sn
+ S ∈ Sn

+

• proximal splitting methods: ADMM for dual SDP is DRS applied to primal SDP
minimize δSn

+
(X) +

(
⟨C, X⟩ + δ{X|A(X)=b}(X)

)
◦ δSn

+
is partly smooth at X⋆ with respect to the fixed-rank manifold (under SC)

◦ (Xk, Sk) satisfies Sk ∈ NSn
+

(Xk) and converges to (X⋆, S⋆)
◦ so the Xk iterates identify the solution rank for sufficiently large k

• augmented Lagrangian method: PPM applied to the dual h(y) = ⟨b, y⟩ + δSn
+

(C − A∗(y))

Xk+1 = argmin{⟨C, X⟩ + ρ
2 ∥AX − b + 1

ρ
yk∥2

2 | X ⪰ 0}

yk+1 = yk + ρ(AXk+1 − b)

◦ h may not be partly smooth at y⋆

◦ additional condition is needed, e.g., primal solution is unique [DLY25] 10



Numerical evidence

• apply ADMM and augmented Lagrangian method (ALM) to the SDP reformulation of

minimize f(x, y) :=
√

x4 + y2

• in the reformulated SDP, rank(X⋆) = 1 and λ1(X⋆) = 1
• f is not partly smooth at 0, so ALM does not have rank identification, whereas ADMM does

ADMM ALM
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A refined error bound for PSD cone projection

for a nonsingular Z ∈ Sn, denote its eigenvalue decomposition by

Z = Q diag(λ1, . . . , λr, λr+1, . . . , λn)QT =
[
QX QS

] [
ΛX 0
0 ΛS

] [
QT

X

QT
S

]
where λ1 ≥ · · · ≥ λr > 0 > λr+1 ≥ · · · ≥ λn

• previous result [SS02]:
∥∥ΠSn

+
(Z + ∆) − ΠSn

+
(Z) −

(
ΠSn

+
(Z)

)′(∆)
∥∥

2 ≲ ∥∆∥2
2

• when Q = I, for all ∆ ∈ Sn with norm sufficiently small, it holds that∥∥ΠSn
+

(Z + ∆) − ΠSn
+

(Z) −
(
ΠSn

+
(Z)

)′(∆)
∥∥

2 ≲ ∥∆O∥2∥∆∥2, where ∆ =
[
∆X ∆T

O

∆O ∆S

]

• in general:
∥∥ΠSn

+
(Z + ∆) − ΠSn

+
(Z) −

(
ΠSn

+
(Z)

)′(∆)
∥∥

2 ≲ ∥QT
S∆OQX∥2∥∆∥2
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Local linear convergence with nondegeneracy

Local linearization of ADMM one-step ADMM can be further reformulated as

Zk+1 − Z⋆ = F(Zk − Z⋆) + Ψk,

where F : Sn → Sn is a linear, firmly nonexpansive with ∥F − ΠFix(F)∥op < 1, and

∥Ψk∥F ≲ ∥∆k,O∥F∥∆k∥F, when ∆k := Zk − Z⋆ is sufficiently small

Local linear convergence with nondegeneracy

primal nondegeneracy: NX⋆
∩ Range(A∗) = {0}, dual nondegeneracy: NS⋆

∩ Null(A) = {0}

• under strict complementarity (SC), nondegeneracy implies uniqueness of primal–dual solutions
• in this case, Fix(F) = {0} and

∥Zk+1 − Z⋆∥F ≤ ρ∥Zk − Z⋆∥F, for sufficiently large k and for any ρ ∈ (∥F∥op, 1)

• same proof holds in non-SC case, recovering [HSZ18] (w/o metric subregularity of KKT operator)
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Local (R-)linear convergence without nondegeneracy (ND)

• without ND, Fix(F) ̸= {0} and the above technique can only establish (R-)linear conv. of

(Id − ΠFix(F))∆k, ΠTS⋆
(Xk), ΠTX⋆

(Sk)

the last two terms are the part of Xk (or Sk) that lies outside the minimal face of X⋆ (or S⋆)

• consider an affine space V := {X | AX = b}

dist(x, V ∩ Rn
+) ≲ dist(x, V) + [−x]+ sharpness

dist(X, V ∩ Sn
+) ≲

(
dist(X, V) + [−λmin(X)]+

)1/2

dist(X, V ∩ Sn
+ ∩ T ⊥

S⋆
) ≲ dist(X, V) + [−λmin(X)]+ + ∥ΠTS⋆

(X)∥F [Sturm00]

• this gives a linear growth condition on the distance to optimality:

dist(Zk, Z⋆) ≲ ∥Zk+1 − Zk∥F + ∥ΠTS⋆
(Xk)∥F + ∥ΠTX⋆

(Sk)∥F
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Rank identification and linear convergence

hamming-11-2 BQP-r1-30-3 Quasar-200

(red curve plot rank(Xk) and blue curve plots ∥Zk+1 − Zk∥F)

Open questions
• in what type of SDPs is rank identification a necessary condition for (R-)linear convergence
• under which conditions will rank identification and (R-)linear convergence occur simultaneously?
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Failure cases

cnhil10 neosfbr25 MAXCUT-G11

• red curve plots KKT residual rmax and blue curve plots ∥Zk+1 − Zk∥F

• ADMM fails to achieve rmax ≤ 10−10 within the budget, with no evident linear convergence
• common feature: min. eigen-val of Z⋆ (in abs. val.) is small (10−4 ∼ 10−9), but not exactly zero
• this observation aligns with recent findings in PDHG for LP [LY24]
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Conclusion

• Algorithmic contribution on ADMM for SDP

◦ mild assumption: ADMM converges to a strictly complementary solution

◦ rank identification: ADMM identifies the solution rank in finitely many iterations

◦ local (R-)linear convergence: a refined error bound for PSD cone projection

• Empirical contribution

◦ numerical results show rank identification and linear convergence across diverse SDPs

◦ demonstrate failure cases linked to near-violations of strict complementarity

Shucheng Kang, Xin Jiang, and Heng Yang.
Local linear convergence of ADMM for SDP under strict complementarity.
arXiv:2503.20142
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